Chinese Journal of Lasers, Volume. 50, Issue 18, 1813008(2023)

Physical Information Security Technology Based on Photonic Nanostructures

Jiancai Xue1、*, Changda Zhou2, Guoli He2, Siyang Li2, and Zhangkai Zhou2
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • 2State Key laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • show less
    References(128)

    [1] Zielińska E, Mazurczyk W, Szczypiorski K. Trends in steganography[J]. Communications of the ACM, 57, 86-95(2014).

    [2] Ferguson N, Schneier B, Kohno T[M]. Cryptography engineering: design principles and practical applications(2010).

    [3] Rabah K. Steganography-the art of hiding data[J]. Information Technology Journal, 3, 245-269(2004).

    [4] Clelland C T, Risca V, Bancroft C. Hiding messages in DNA microdots[J]. Nature, 399, 533-534(1999).

    [5] White W. The microdot: then and now[J]. International Journal of Intelligence and CounterIntelligence, 3, 249-269(1989).

    [6] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [7] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [8] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).

    [9] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [10] Li Z L, Zhou Z, Liang C L et al. Advances in the research of multifunctional metasurfaces merging computer-generated holography and nanoprinting[J]. Infrared and Laser Engineering, 49, 20201036(2020).

    [11] Kumar K, Duan H G, Hegde R S et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 7, 557-561(2012).

    [12] Xue J C, Zhou Z K, Wei Z Q et al. Scalable, full-colour and controllable chromotropic plasmonic printing[J]. Nature Communications, 6, 8906(2015).

    [13] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 8, 14606(2017).

    [14] Hu D J, Lu Y D, Cao Y Y et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy[J]. ACS Nano, 12, 9233-9239(2018).

    [15] Xue J C, Zhou Z K, Lin L M et al. Perturbative countersurveillance metaoptics with compound nanosieves[J]. Light: Science & Applications, 8, 101(2019).

    [16] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [17] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [18] Wang L, Kruk S, Tang H Z et al. Grayscale transparent metasurface holograms[J]. Optica, 3, 1504-1505(2016).

    [19] Huang K, Liu H, Garcia-Vidal F J et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 6, 7059(2015).

    [20] Deng Z L, Tu Q A, Li X P. Multi-dimensional metasurface and its application in information encryption and anti-counterfeiting[J]. Infrared and Laser Engineering, 49, 20201034(2020).

    [21] Xu H X, Wang Y Z, Wang C H et al. Research progress of multifunctional metasurfaces based on the multiplexing concept[J]. Journal of Radars, 10, 191-205(2021).

    [22] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).

    [23] Ouyang X, Xu Y, Xian M C et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 15, 901-907(2021).

    [24] Bao Y J, Li B J. Design and application of Jones matrix metasurface with different degrees of freedom[J]. Acta Optica Sinica, 43, 1623007(2023).

    [25] Dong F L, Feng H, Xu L H et al. Information encoding with optical dielectric metasurface via independent multichannels[J]. ACS Photonics, 6, 230-237(2019).

    [26] Song Q H, Baroni A, Sawant R et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nature Communications, 11, 2651(2020).

    [27] Xiong K L, Emilsson G, Maziz A et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color[J]. Advanced Materials, 28, 9956-9960(2016).

    [28] Xiong K L, Tordera D, Emilsson G et al. Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals[J]. Nano Letters, 17, 7033-7039(2017).

    [29] Lee K T, Seo S, Guo L J. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers[J]. Advanced Optical Materials, 3, 347-352(2015).

    [30] Kim T, Yu E S, Bae Y G et al. Asymmetric optical camouflage: tuneable reflective colour accompanied by the optical Janus effect[J]. Light: Science & Applications, 9, 175(2020).

    [31] England G T, Russell C, Shirman E et al. The optical Janus effect: asymmetric structural color reflection materials[J]. Advanced Materials, 29, 1606876(2017).

    [32] Chen K, Ding G W, Hu G W et al. Directional Janus metasurface[J]. Advanced Materials, 32, 1906352(2020).

    [33] Li C, Zhao M X, Zhou X et al. Janus structural color from a 2D photonic crystal hybrid with a fabry-perot cavity[J]. Advanced Optical Materials, 6, 1800651(2018).

    [34] Jung C, Kim S J, Jang J et al. Disordered-nanoparticle-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays[J]. Science Advances, 8, eabm8598(2022).

    [35] Carrillo S G C, Trimby L, Au Y Y et al. A nonvolatile phase-change metamaterial color display[J]. Advanced Optical Materials, 7, 1801782(2019).

    [36] Daqiqeh Rezaei S, Ho J, Naderi A et al. Tunable, cost-effective, and scalable structural colors for sensing and consumer products[J]. Advanced Optical Materials, 7, 1900735(2019).

    [37] Rossi S, Olsson O, Chen S Z et al. Dynamically tuneable reflective structural coloration with electroactive conducting polymer nanocavities[J]. Advanced Materials, 33, 2105004(2021).

    [38] Ruan Q F, Zhang W, Wang H et al. Reconfiguring colors of single relief structures by directional stretching[J]. Advanced Materials, 34, 2108128(2022).

    [39] Lee J H, Kim Y J, Yoo Y J et al. Colored, covert infrared display through hybrid planar-plasmonic cavities[J]. Advanced Optical Materials, 9, 2100429(2021).

    [40] Ellenbogen T, Seo K, Crozier K B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry[J]. Nano Letters, 12, 1026-1031(2012).

    [41] Li Z B, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette[J]. ACS Nano, 10, 492-498(2016).

    [42] Olson J, Manjavacas A, Liu L F et al. Vivid, full-color aluminum plasmonic pixels[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 14348-14353(2014).

    [43] Shaltout A M, Kim J, Boltasseva A et al. Ultrathin and multicolour optical cavities with embedded metasurfaces[J]. Nature Communications, 9, 2673(2018).

    [44] Yang B, Liu W W, Li Z C et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 6, 1701009(2018).

    [45] Deng J, Deng L G, Guan Z Q et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Letters, 20, 1830-1838(2020).

    [46] Deng Z L, Tu Q A, Wang Y J et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Advanced Materials, 33, 2103472(2021).

    [47] Song M W, Feng L, Huo P C et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface[J]. Nature Nanotechnology, 18, 71-78(2023).

    [48] Li K, Wang J W, Cai W F et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals[J]. Nano Letters, 21, 7183-7190(2021).

    [49] Wang X J, Xu D, Jaquet B et al. Structural colors by synergistic birefringence and surface plasmon resonance[J]. ACS Nano, 14, 16832-16839(2020).

    [50] Frese D, Wei Q S, Wang Y T et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 19, 3976-3980(2019).

    [51] Liu H L, Xu J H, Wang H et al. Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security[J]. Advanced Materials, 31, 1807900(2019).

    [52] Liu C, Fan Z Y, Tan Y Z et al. Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis[J]. Advanced Materials, 32, 1907569(2020).

    [53] Davis M S, Zhu W Q, Xu T et al. Aperiodic nanoplasmonic devices for directional colour filtering and sensing[J]. Nature Communications, 8, 1347(2017).

    [54] Abir T, Tal M, Ellenbogen T. Second-harmonic enhancement from a nonlinear plasmonic metasurface coupled to an optical waveguide[J]. Nano Letters, 22, 2712-2717(2022).

    [55] Díaz-Escobar E, Bauer T, Pinilla-Cienfuegos E et al. Radiationless anapole states in on-chip photonics[J]. Light: Science & Applications, 10, 204(2021).

    [56] Jiang H, Kaminska B, Porras H et al. Microlens arrays above interlaced plasmonic pixels for optical security devices with high-resolution multicolor motion effects[J]. Advanced Optical Materials, 7, 1900237(2019).

    [57] Duan X Y, Liu N. Scanning plasmonic color display[J]. ACS Nano, 12, 8817-8823(2018).

    [58] Wang K, Liang J E, Chen R et al. Geometry-programmable perovskite microlaser patterns for two-dimensional optical encryption[J]. Nano Letters, 21, 6792-6799(2021).

    [59] Xu K, Wang X E, Fan X H et al. Meta-holography: from concept to realization[J]. Opto-Electronic Engineering, 49, 220183(2022).

    [60] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [61] Kats M A, Genevet P, Aoust G et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences, 109, 12364-12368(2012).

    [62] Zhou H Q, Wang Y T, Li X W et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces[J]. Nanophotonics, 9, 905-912(2020).

    [63] Zhou C D, Mou Z, Lu P Y et al. Optical singularity built on tiny holes[J]. Annalen Der Physik, 533, 2100147(2021).

    [64] Li Z L, Yu S H, Zheng G X. Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more[J]. Nanophotonics, 9, 3699-3731(2020).

    [65] Zhang L, Mei S T, Huang K et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 4, 818-833(2016).

    [66] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).

    [67] Guo X Y, Li P, Zhong J Z et al. Stokes meta-hologram toward optical cryptography[J]. Nature Communications, 13, 6687(2022).

    [68] Mehmood M Q, Seong J, Naveed M A et al. Single-cell-driven tri-channel encryption meta-displays[J]. Advanced Science, 9, 2203962(2022).

    [69] Wan W P, Yang W H, Feng H et al. Multiplexing vectorial holographic images with arbitrary metaholograms[J]. Advanced Optical Materials, 9, 2100626(2021).

    [70] Rubin N A, Zaidi A, Dorrah A H et al. Jones matrix holography with metasurfaces[J]. Science Advances, 7, 7488(2021).

    [71] Fan Q B, Liu M Z, Zhang C et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 125, 267402(2020).

    [72] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 10, 10671-10680(2016).

    [73] Huang L L, Zhang S A, Zentgraf T. Metasurface holography: from fundamentals to applications[J]. Nanophotonics, 7, 1169-1190(2018).

    [74] Ullah N, Zhao R Z, Huang L L. Recent advancement in optical metasurface: fundament to application[J]. Micromachines, 13, 1025(2022).

    [75] Song Q, Khadir S, Vézian S et al. Bandwidth-unlimited polarization-maintaining metasurfaces[J]. Science Advances, 7, eabe1112(2021).

    [76] Zhao R Z, Li X, Geng G Z et al. Encoding arbitrary phase profiles to 2D diffraction orders with controllable polarization states[J]. Nanophotonics, 12, 155-163(2023).

    [77] Luo X H, Hu Y Q, Li X et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption[J]. Advanced Optical Materials, 8, 1902020(2020).

    [78] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 8, 95(2019).

    [79] Hu Y Q, Li L, Wang Y J et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 20, 994-1002(2020).

    [80] Huang Y W, Chen W T, Tsai W Y et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 15, 3122-3127(2015).

    [81] Wang B, Dong F L, Li Q T et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 16, 5235-5240(2016).

    [82] Arbabi E, Kamali S M, Arbabi A et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation[J]. ACS Photonics, 6, 2712-2718(2019).

    [83] Deng Z L, Jin M K, Ye X et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 30, 1910610(2020).

    [84] Xiao Q, Ma Q, Yan T et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface[J]. Advanced Optical Materials, 9, 2002155(2021).

    [85] Yang H, He P, Ou K et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light: Science & Applications, 12, 79(2023).

    [86] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [87] Zheng H T, Zhang S, Xu T. Advances in tunable electromagnetic metasurfaces[J]. Acta Optica Sinica, 43, 0822004(2023).

    [88] Georgi P, Wei Q S, Sain B et al. Optical secret sharing with cascaded metasurface holography[J]. Science Advances, 7, eabf9718(2021).

    [89] Wei Q S, Huang L L, Zhao R Z et al. Rotational multiplexing method based on cascaded metasurface holography[J]. Advanced Optical Materials, 10, 2102166(2022).

    [90] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 17, 3641-3645(2017).

    [91] Li J X, Kamin S, Zheng G X et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 4, eaar6768(2018).

    [92] Dong Y B, Luan H T, Lin D J et al. Laser-induced graphene hologram reconfiguration for countersurveillance multisecret sharing[J]. Laser & Photonics Reviews, 17, 2200805(2023).

    [93] Yoon G, Lee D, Nam K T et al. Crypto-display in dual-mode metasurfaces by simultaneous control of phase and spectral responses[J]. ACS Nano, 12, 6421-6428(2018).

    [94] Liang C L, Deng L G, Dai Q et al. Single-celled multifunctional metasurfaces merging structural-color nanoprinting and holography[J]. Optics Express, 29, 10737-10748(2021).

    [95] Wei Q S, Sain B, Wang Y T et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 19, 8964-8971(2019).

    [96] Dai C J, Wan C W, Li Z et al. Stepwise dual-Fabry-Pérot nanocavity for grayscale imaging encryption/concealment with holographic multiplexing[J]. Advanced Optical Materials, 9, 2100950(2021).

    [97] Wen D D, Cadusch J J, Meng J J et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Advanced Functional Materials, 30, 1906415(2020).

    [98] Zhang F, Pu M B, Gao P et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Advanced Science, 7, 1903156(2020).

    [99] Lim K T P, Liu H L, Liu Y J et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nature Communications, 10, 25(2019).

    [100] Dai Q, Guan Z Q, Chang S et al. A single-celled tri-functional metasurface enabled with triple manipulations of light[J]. Advanced Functional Materials, 30, 2003990(2020).

    [101] Zhang C M, Dong F L, Intaravanne Y et al. Multichannel metasurfaces for anticounterfeiting[J]. Physical Review Applied, 12, 034028(2019).

    [102] Wan S, Tang J, Wan C W et al. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage[J]. Advanced Optical Materials, 10, 2102820(2022).

    [103] Zhang Y A, Shi L, Hu D J et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 4, 601-609(2019).

    [104] Li Z L, Chen C, Guan Z Q et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser & Photonics Reviews, 14, 2000032(2020).

    [105] Liu M Z, Zhu W Q, Huo P C et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states[J]. Light: Science & Applications, 10, 107(2021).

    [106] Bao Y J, Wen L, Chen Q et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 7, eabh0365(2021).

    [107] Kim I, Jang J, Kim G et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform[J]. Nature Communications, 12, 3614(2021).

    [108] Ren R Y, Li Z L, Deng L G et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption[J]. Nanophotonics, 10, 2903-2914(2021).

    [109] Bao Y J, Yu Y, Xu H F et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 28, 1805306(2018).

    [110] Zheng Y Q, Deng Y H, Shi Z H et al. Enriching metasurface functionalities by fully employing the inter-meta-atom degrees of freedom for double-key-secured encryption[J]. Advanced Materials Technologies, 8, 2201468(2023).

    [111] Yang W H, Qu G Y, Lai F X et al. Dynamic bifunctional metasurfaces for holography and color display[J]. Advanced Materials, 33, 2101258(2021).

    [112] Wang Z J, Dai C J, Zhang J et al. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities[J]. Advanced Functional Materials, 32, 2110022(2022).

    [113] Wan C W, Li Z, Wan S et al. Electric-driven meta-optic dynamics for simultaneous near-/ far-field multiplexing display[J]. Advanced Functional Materials, 32, 2110592(2022).

    [114] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [115] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [116] Fickler R, Lapkiewicz R, Huber M et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nature Communications, 5, 4502(2014).

    [117] Li Y, Li X, Chen L W et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 5, 1600502(2017).

    [118] Feng F, Hu J B, Guo Z F et al. Deep learning-enabled orbital angular momentum-based information encryption transmission[J]. ACS Photonics, 9, 820-829(2022).

    [119] Yan Y, Xie G D, Lavery M P J et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 4876(2014).

    [120] Yu P, Li J X, Li X et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 13, 7100-7106(2019).

    [121] Ren H R, Wang X X, Li C H et al. Orbital-angular-momentum-controlled hybrid nanowire circuit[J]. Nano Letters, 21, 6220-6227(2021).

    [122] Wang H T, Wang H, Ruan Q F et al. Coloured vortex beams with incoherent white light illumination[J]. Nature Nanotechnology, 18, 264-272(2023).

    [123] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [124] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [125] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [126] Fang X Y, Yang H C, Yao W Z et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 3, 015001(2021).

    [127] Fang X Y, Wang H J, Yang H C et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal[J]. Physical Review A, 102, 043506(2020).

    [128] Kong L J, Sun Y F, Zhang F R et al. High-dimensional entanglement-enabled holography[J]. Physical Review Letters, 130, 053602(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jiancai Xue, Changda Zhou, Guoli He, Siyang Li, Zhangkai Zhou. Physical Information Security Technology Based on Photonic Nanostructures[J]. Chinese Journal of Lasers, 2023, 50(18): 1813008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: May. 22, 2023

    Accepted: Jul. 17, 2023

    Published Online: Sep. 12, 2023

    The Author Email: Xue Jiancai (xuejiancai@gdut.edu.cn)

    DOI:10.3788/CJL230750

    Topics