NUCLEAR TECHNIQUES, Volume. 48, Issue 5, 050012(2025)
Machine learning methods for studying heavy-ion fusion cross sections
[9] MA Yugang, ZHAO Hongwei. High current heavy ion accelerator and its scientific research topic Editor's note[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 5(2020).
[46] Ke G L, Meng Q, Finley T, Guyon I, Luxburg U V, Bengio S, ed et al. Highly efficient gradient boosting decision tree[C], 30, 3149-3157(2017).
[59] Thampi A. Interpretable AI: Building explainable machine learning systems[M]. Simon and Schuster(2022).
[60] Lundberg S. A unified approach to interpreting model predictions[J/OL]. arXiv preprint(2017).
Get Citation
Copy Citation Text
Zhilong LI, Yongjia WANG, Qingfeng LI. Machine learning methods for studying heavy-ion fusion cross sections[J]. NUCLEAR TECHNIQUES, 2025, 48(5): 050012
Category: Special Topics on Applications of Machine Learning in Nuclear Physics and Nuclear Data
Received: Mar. 24, 2025
Accepted: --
Published Online: Jun. 26, 2025
The Author Email: Yongjia WANG (王永佳), Qingfeng LI (李庆峰)