Chinese Optics Letters, Volume. 20, Issue 3, 031101(2022)
Square Maxwell’s fish-eye lens for near-field broadband achromatic super-resolution imaging
[1] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966(2000).
[2] N. Fang, H. Lee, S. Cheng, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534(2005).
[3] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand. Near-field microscopy through a SiC superlens. Science, 313, 1595(2006).
[4] I. I. Smolyaninov, Y. J. Hung, C. C. Davis. Magnifying superlens in the visible frequency range. Science, 315, 1699(2007).
[5] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435(2008).
[6] T. Huang, L. Yin, J. Zhao, C. Du, P. Liu. Amplifying evanescent waves by dispersion-induced plasmons: defying the materials limitation of the superlens. ACS Photon., 7, 2173(2020).
[7] Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).
[8] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 1, 143(2010).
[9] D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, K. E. Goodson. Microfabricated silicon solid immersion lens. J. Microelectromech. Syst., 10, 450(2001).
[10] F. M. Huang, N. Zheludev, Y. Chen, F. Javier Garcia de Abajo. Focusing of light by a nanohole array. Appl. Phys. Lett., 90, 091119(2007).
[11] D. R. Mason, M. V. Jouravlev, K. S. Kim. Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt. Lett., 35, 2007(2010).
[12] M. S. Kim, T. Scharf, M. T. Haq, W. Nakagawa, H. P. Herzig. Subwavelength-size solid immersion lens. Opt. Lett., 36, 3930(2011).
[13] A. Bogucki, Ł. Zinkiewicz, M. Grzeszczyk, W. Pacuski, K. Nogajewski, T. Kazimierczuk, A. Rodek, J. Suffczyński, K. Watanabe, T. Taniguchi. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. Light Sci. Appl., 9, 48(2020).
[14] H. Zhu, W. Fan, S. Zhou, M. Chen, L. Wu. Polymer colloidal sphere-based hybrid solid immersion lens for optical super-resolution imaging. ACS Nano, 10, 9755(2016).
[15] F. Wen, B. Yan, Z. Wang, L. Wu. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv., 2, e1600901(2016).
[16] A. Novitsky, T. Repän, R. Malureanu, O. Takayama, E. Shkondin, A. V. Lavrinenko. Search for superresolution in a metamaterial solid immersion lens. Phys. Rev. A, 99, 023835(2019).
[17] R. K. Luneburg. Mathematical Theory of Optics(1964).
[18] A. L. Mikaelian, A. M. Prokhorov. V self-focusing media with variable index of refraction. Prog. Opt., 17, 279(1980).
[19] N. Kundtz, D. R. Smith. Extreme-angle broadband metamaterial lens. Nat. Mater., 9, 129(2010).
[20] U. Leonhardt, T. G. Philbin. Perfect imaging with positive refraction in three dimensions. Phys. Rev. A, 81, 011804(R)(2010).
[21] H. F. Ma, T. J. Cui. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun., 1, 124(2010).
[22] T. Tyc, L. Herzánová, M. Šarbort, K. Bering. Absolute instruments and perfect imaging in geometrical optics. New J. Phys., 13, 115004(2011).
[23] Y. Zhao, Y. Zhang, M. Zheng, X. Dong, X. Duan, Z. Zhao. Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev., 10, 665(2016).
[24] S. Tao, Y. Zhou, H. Chen. Maxwell’s fish-eye lenses under Schwartz–Christoffel mappings. Phys. Rev. A, 99, 013837(2019).
[25] Q. Wu, J. P. Turpin, D. H. Werner. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci. Appl., 1, e38(2012).
[26] S. Li, Y. Zhou, J. Dong, X. Zhang, E. Cassan, J. Hou, C. Yang, S. Chen, D. Gao, H. Chen. Universal multimode waveguide crossing based on transformation optics. Optica, 5, 1549(2018).
[27] M. G. Scopelliti, M. Chamanzar. Ultrasonically sculpted virtual relay lens for in situ microimaging. Light Sci. Appl., 8, 65(2019).
[28] C. He, J. Chang, Q. Hu, J. Wang, J. Antonello, H. He, S. Liu, J. Lin, B. Dai, D. S. Elson, P. Xi, H. Ma, M. J. Booth. Complex vectorial optics through gradient index lens cascades. Nat. Commun., 10, 4264(2019).
[29] A. Forbes. Common elements for uncommon light: vector beams with GRIN lenses. Light Sci. Appl., 8, 111(2019).
[30] Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photon., 8, 202(2020).
[31] J. C. Maxwell. Solutions of problems. Cambridge Dublin Math. J., 8, 188(1854).
[32] X. Wang, H. Chen, H. Liu, L. Xu, C. Sheng, S. Zhu. Self-focusing and the Talbot effect in conformal transformation optics. Phys. Rev. Lett., 119, 033902(2017).
[33] J. Chen, Y. Zhou, H. Chu, Y. Lai, H. Chen, M. Chen, D. Fang. Highly efficient gradient solid immersion lens with large numerical aperture for broadband achromatic deep subwavelength focusing and magnified far field. Adv. Opt. Mater., 9, 2100509(2021).
[34] Y. Zhou, Z. Hao, P. Zhao, H. Chen. Super-resolution imaging in absolute instruments, 01632(2021).
[35] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780(2006).
[36] U. Leonhardt. Optical conformal mapping. Science, 312, 1777(2006).
[37] H. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387(2010).
[38] H. Chen, W. Xiao. Morse lens. Chin. Opt. Lett., 18, 062403(2020).
[39] M. Schmiele, V. S. Varma, C. Rockstuhl, F. Lederer. Designing optical elements from isotropic materials by using transformation optics. Phys. Rev. A, 81, 033837(2010).
[40] U. Leonhardt, T. G. Philbin. Geometry and Light: The Science of Invisibility(2010).
[41] J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang. An optical cloak made of dielectrics. Nat. Mater., 8, 568(2009).
[42] D. Headland, A. K. Klein, M. Fujita. Dielectric slot-coupled half-Maxwell fisheye lens as octave-bandwidth beam expander for terahertz-range applications, 11210(2021).
[43] L. Zhang, L. Wang, Y. Wu, R. Tai. Plasmonic Luneburg lens and plasmonic nano-coupler. Chin. Opt. Lett., 18, 092401(2020).
[44] O. Bitton, R. Bruch, U. Leonhardt. Two-dimensional Maxwell fisheye for integrated optics. Phys. Rev. Appl., 10, 044059(2018).
[45] C. R. Ocier, C. A. Richards, D. A. Bacon-Brown, Q. Ding, R. Kumar, T. J. Garcia, J. van de Groep, J.-H. Song, A. J. Cyphersmith, A. Rhode, A. N. Perry, A. J. Littlefield, J. Zhu, D. Xie, H. Gao, J. F. Messinger, M. L. Brongersma, K. C. Toussaint, L. L. Goddard, P. V. Braun. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl., 9, 196(2020).
[46] R. Dylla-Spears, T. D. Yee, K. Sasan, D. Nguyen, N. A. Dudukovic, J. M. Ortega, M. A. Johnson, O. D. Herrera, F. J. Ryerson, L. L. Wong. 3D printed gradient index glass optics. Sci. Adv., 6, 7(2020).
Get Citation
Copy Citation Text
Jue Li, Yangyang Zhou, Huanyang Chen, "Square Maxwell’s fish-eye lens for near-field broadband achromatic super-resolution imaging," Chin. Opt. Lett. 20, 031101 (2022)
Category: Imaging Systems and Image Processing
Received: Oct. 25, 2021
Accepted: Dec. 13, 2021
Posted: Dec. 14, 2021
Published Online: Jan. 11, 2022
The Author Email: Yangyang Zhou (zhouyangyang@stu.xmu.edu.cn), Huanyang Chen (kenyon@xmu.edu.cn)