Chinese Journal of Lasers, Volume. 37, Issue 9, 2253(2010)
Progress of Excimer Lasers Technology
[1] [1] D.Basting,U.Stamm.The development of excimer laser technology-history and future prospects [J].International J.Research in Physical Chemistry & Chemical Physics,2001,215(15):75-99
[2] [2] D.Basting,K.Pippert,U.Stamm.History and future prospects of excimer lasers[C].SPIE,2002,4426:25-34
[3] [3] Lou Qihong,Xu Jie,Fu Shufen et al..Pulsed Gas-Discharge Lasers [M].Beijing:Science Press,1993.238-293
[4] [4] G.Overton,G.S.Anderson,A.D.Belforte et al..Reviews and forecasts for 2009-2010 global laser market [J].Laser Focus World China,2010,(1):8-14
[5] [5] Lou Qihong.Progress of excimer lasers and its applications [J].Chinese J.Lasers,1994,A21(5):361-364
[6] [6] D.Basting,G.Marowsky.Excimer Laser Technology [M].Germany Berlin:Springer,2005.41-103
[7] [7] C.K.Rhodes,C.A.Brau.Excimer Lasers [M].New York:Springer-Verlag,1984.5-42
[8] [8] N.G.Basov,V.A.Danilychev,Y.M.Popov et al..Laser operating in vacuum region of spectrum by excitation of liquid xenon with an electron beam [J].Jetp Letters-Ussr,1970,12(10):329-331
[9] [9] H.A.Koehler,L.J.Ferderber,D.L.Redhead et al..Stimulated VUV emission in high-pressure xenon excited by high-current relativistic electron-beams [J].Appl.Phys.Lett.,1972,21(5):198-200
[10] [10] J.E.Velazco,D.W Setser.Bound-free emission-spectra of diatomic xenon halides [J].J.Chem.Phys.,1975,62(5):1990-1991
[11] [11] S.K.Searles,G.A.Hart.Stimulated emission at 281.8 nm from XeBr [J].Appl.Phys.Lett.,1975,27(4):243-245
[12] [12] M.K.Makarov.Once upon a time:a hearty glance over the 30-year history of excimer lasers [C].SPIE,2005,5777:542-547
[13] [13] Liu Jingru.Excimer Laser Technology and Application [M].Beijing:National Defense Industry Press,2009.5-9
[14] [14] D.J.Elliott,U.K.Senguta.Excimer lasers for deep UV lithography [C].SPIE,1991,1377:6-17
[15] [15] R.Sandstrom.Measurements of beam characteristics relevant to DUV microlithography on a KrF excimer laser [C].SPIE,1990,1264:505-519
[16] [16] P.Lokai,U.Rebhan,P.Oesterlin et al..High rep.-rate KrF lithography excimer laser with narrow bandwidth below 2 pm [C].SPIE,1990,1264:496-504
[17] [17] R.Paetzel,J.Kleinschmidt,U.Rebhan et al..KrF excimer laser with repetition rates of 1 kHz for DUV lithography [C].SPIE,1995,2440:101-105
[18] [18] T.P.Duffey,T.J.Embree,T.Ishihara et al..ArF lasers for production of semiconductor devices with CD 0.15 m [C].SPIE,1998,3334:1014-1020
[19] [19] H.Endert,R.Paetzel,U.Rebhan et al..New KrF and ArF excimer lasers for advanced deep ultraviolet optical lithography [J].Jpn.J.Appl.Phys.,1995,34(8A):4050-4054
[20] [20] K.Midorikawa,M.Obara,T.Fujioka.X-ray preionization of rare-gas-halide lasers [J].IEEE J.Quantum Electron.,1984,QE-20(3):198-205
[21] [21] R.S.Taylor,A.J.Alcock,K.E.Leopold.Electrical and gain characteristics of a simple compact XeCl laser [J].Opt.Commun.,1979,31(2):197-202
[22] [22] R.S.Taylor,A.J.Alcock,K.E.Leopold.Laser-induced preionization of a rare-gas halide discharge [J].Opt.Lett.,1980,5(6):216-218
[23] [23] H.H.Klingenberg.Microwave excitation of excimer lasers [J].Laser and Optoelecktronik,1990,22(4):60-62
[24] [24] H.H.Klingenberg,F.Gekat.Investigation of microwave-pumped excimer and rare-gas laser transitions [C].SPIE,1991,1412:103-114
[25] [25] H.H.Klingenberg,F.Gekat,G.Spindler.Microwave excitation of a XeCl laser without preionization [C].SPIE,1990,1278:43-50
[26] [26] P.J.K.Wisoff,A.J.Mendelsohn,S.E.Harris et al..Improved performance of the microwave-pumped XeCl laser [J].IEEE J.Quantum Electron.,1982,QE-18(11):1839-1840
[27] [27] V.N.Slinko,A.S.Sulakshin,S.S.Sulakshin.Efficient stimulated emission from a microwave-pumped XeCl laser [J].Sov.J.Quantum Electron.,1988,18(2):186-187
[28] [28] C.P.Christensen,C.Gordon III,C.Motoulas et al..High-repetition-rate XeCl waveguide laser without gas flow [J].Opt.Lett.,1987,12(3):169-171
[29] [29] T.Hasama,K.Miyazaki,K.Yamada et al..50 J discharge-pumped XeCl laser [J].IEEE J.Quantum Electron.,1989,25(1):113-120
[30] [30] Y.Saito,M.Inoue,S.Fujikawa et al..Development of a 2-kW XeCl laser with a surface corona preionization scheme and a spiker-sustainer circuit [J].IEEE J.Sel.Top.Quantum Electron.,1995,1(3):811-824
[31] [31] Product catalog of coherent.www.coherent.com
[32] [32] J.W.Gerritsen,G.J.Ernst.High-pressure behavior of an X-ray preionized discharge pumped XeCl laser [J].Appl.Phys.B-Photophysics and Laser Chemistry,1988,46(2):141-146
[33] [33] Chen Liang,Zhao Zhensheng,Gu Huaimin et al..Design and application of modified Ernst′s uniform-field electrode [J].Chinese J.Quantum Electron.,1997,14(4):393-399
[34] [34] T.Y.Chang.Improved uniform-field electrode profiles for TEA laser and high-voltage applications [J].Review of Scientific Instruments,1973,44(4):405-407
[35] [35] E.A.Stappaerts.A novel analytical design method for discharge laser electrode profiles [J].Appl.Phys.Lett.,1982,40(12):1018-1019
[36] [36] G.J.Ernst.Uniform-field electrodes with minimum width [J].Opt.Commun.,1984,49(4):275-277
[37] [37] S.Watanabe,M.Watanabe,A.Endoh et al..High repetition long pulse XeCl laser with a coaxial ceramic pulse-forming line [J].Review of Scientific Instruments,1986,57(12):2970-2973
[38] [38] W.H.Long,M.J.Plummer,E.A.Stappaerts.Efficient discharge pumping of an XeCl laser using a high-voltage prepulse [J].Appl.Phys.Lett.,1983,43(8):735-737
[39] [39] K.Haruta,Y.Saito,M.Inoue et al..High-efficiency 2 kW XeCl excimer laser [J].Appl.Phys.B,1999,68(4):663-669
[40] [40] W.D.Gillespie,T.Ishihara,W.N.Partlo et al..6 kHz MOPA light source for 193 nm immersion lithography [C].SPIE,2005,5754:1293-1303
[41] [41] P.C.Oh,V.Fleurov,T.Hofmann et al..Production-ready 4 kHz ArF laser for 193 nm lithography [C].SPIE,2002,4691 II:1753-1760
[42] [42] M.H.Vonbergmann,L.P.Swart.Industrial excimer and CO2 TEA lasers with kilowatt average output power [C].SPIE,1991,1397:63-66
[43] [43] M.H.Vonbergmann,G.L.Bredekamp,P.H.Swart.High repetition rate high power excimer lasers [C].SPIE,1988,1023:20-24
[44] [44] M.L.Sentis,B.L.Fontaine,B.M.Forestier.Wave Behaviour in a High Average Power Excimer Laser [M].Stanford:Stanford University Press,1986.851-857
[45] [45] K.Kakizaki,T.Yabu,T.Hori et al..Reduction of acoustic waves induced by discharge in high repetition rate ArF excimer laser cavity to obtain narrow-bandwidth laser light [J].Jap.J.Appl.Phys.,Part 1:Regular Papers and Short Notes and Review Papers,2006,45(10A):7719-7723
[46] [46] L.J.Denes,L.E.Kline.Electrode geometry and pre-ionizer geometry effects on TEA laser discharge formation [J].Appl.Phys.Lett.,1977,30(4):197-199
[47] [47] J.I.Levatter,S.C.Lin.Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas-pressures [J].J.Appl.Phys.,1980,51(1):210-222
[48] [48] J.Fieret.Aerodynamic aspects of a corona-preionised high repetition frequency excimer laser [C].SPIE,1990,1225:122-130
[49] [49] D.Beaupere,B.Lacour,C.Gagnol et al..High-efficiency corona photo triggered excimer lasers [C].Publ.by IEEE,1988.64-65
[50] [50] W.N.Partlo,R.L.Sandstrom,I.V.Fomenkov et al..Low cost of ownership KrF excimer laser using a novel pulse power and chamber configuration [C].SPIE,1995,2440:90-100
[52] [52] W.S.Melville.The use of saturable reactor as discharge devices for pulse generators [J].Proceedings Insfitute of Electrical Engineers,1951,98(3):185-205
[53] [53] I.Smilanski,S.R.Byron,T.R.Burkes.Electrical excitation of a XeCl laser using magnetic pulse-compression [J].Appl.Phys.Lett.,1982,40(7):547-548
[54] [54] H.Tanaka,M.Obara.An all solid-state magnetic pulse compressor with amorphous metals for pumping a repetition-rated KrF excimer laser [J].Review of Scientific Instruments,1990,61(4):1196-1199
[55] [55] T.Shimada,M.Obara,A.Noguchi.An all solid-state magnetic switching exciter for pumping excimer lasers [J].Review of Scientific Instruments,1985,56(11):2018-2020
[56] [56] H.Hatanaka,M.Obara.High-efficiency operation of the high-repetition-rate all-solid-state magnetic pulse compressor for KrF excimer lasers [J].Meas.Sci.Technol.,1991,2(1):42-48
[57] [57] V.Fleurov,S.Rokitski,R.Bergstedt et al..XLR 600i:recirculating ring ArF light source for double patterning immersion lithography [C].SPIE,2008,6924:69241R
[58] [58] S.Rokitski,V.Fleurov,R.Bergstedt et al..Enabling high volume manufacturing of double patterning immersion lithography with the XLR 600ix ArF light source [C].SPIE,2009,7274:72743O
[59] [59] H.Tsushima,M.Yoshino,T.Ohta et al..Reliability report of high power injection lock laser light source for double exposure and double patterning ArF immersion lithography [C].SPIE,2009,7274:72743L
[60] [60] K.Wakana,H.Tsushima,S.Matsumoto et al..Optical performance of laser light source for ArF immersion double patterning lithography tool [C].SPIE,2009,7274:72743J
[61] [61] T.Saito,S.Ito,A.Tada.Long lifetime operation of an ArF-excimer laser [J].Appl.Phys.B:Lasers and Optics,1996,63(3):229-235
[62] [62] Fang Xiaodong,Dai Jinghua.Experimental study on gas lifetime of XeCl excimer laser[J].Laser Technology,1996,20(1):50-52
[63] [63] S.Ito,T.Saito,A.Tada.A new gas purifier for ArF excimer lasers [J].Rev.Sci.Instrum.,1996,67(3):658-661
[64] [64] Robert E.Turner,John L.Remo,Vinod Kumar.Dependence of excimer laser beam properties on laser gas composition [C].SPIE,1993,1835:158-164
[65] [65] A.D.Boardman,E.M.Hodgson,M.B.Richardson et al..Automated control of industrial-scale excimer lasers [C].SPIE,1994,2206:163
[66] [66] S.Ogura,Y.Kawakubo,K.Sasaki et al..Output power stabilization of a XeCl excimer laser by HCl gas injection [C].SPIE,1991,1412:123-128
[67] [67] O.P.Uteza,M.L.Sentis,P.C.Delaporte et al..Laser-beam quality of high pulse repetition frequency excimer lasers [J].Opt.Commun.,1993,102(5-6):523-531
[68] [68] K.Ohta,T.Yagi,H.Saito et al..Beam quality measurement of a narrow-band KrF excimer laser with stimulated Brillouin-scattering phase conjugate double-pass amplifier at 100 Hz operation [J].J.Appl.Phys.,1991,69(11):7440-7443
[69] [69] G.Klauminzer.Oscillator-amplifier approach in excimer lasers [J].Lasers and Applications,1986,5(9):75-78
[70] [70] H.Chu,D.H.Kim,Y.M.Jhon et al..Injection locking of a modified-unstable-resonator XeCl laser by using a line-narrowed hemiconfocal oscillator [J].Jpn.J.Appl.Phys.Part 1-Regular Papers Short Notes & Review Papers,1994,33(8):4617-4621
[73] [73] D.J.W.Brown,P.O′keeffe,V.B.Fleurov et al..XLR 500i:recirculating ring ArF light source for immersion lithography [C].SPIE,2007,6520:652020
[74] [74] T.J.Mckee.Spectral-narrowing techniques for excimer laser-oscillators [J].Can.J.Phys.,1985,63(2):214-219
[77] [77] M.Sugii,M.Ando,K.Sasaki.Simple long-pulse XeCl laser with narrow-line output [J].IEEE J.Quantum Electron.,1987,QE-23(9):1458-1460
[78] [78] R.S.Taylor,K.E.Leopold.Ultralong optical-pulse corona preionized XeCl laser [J].J.Appl.Phys.,1989,QE-65(1):22-29
[79] [79] O.Wakabayashi,T.Ariga,T.Kumazaki et al..Beam quality of a new-type MOPO laser system for VUV laser lithography [C].SPIE,2004,5377:1772-1780
[80] [80] Tang Xiuzhang,Wang Xiaojun,Yao Gang.Pulse compression of KrF laser stimulated Brillouin scattering [J].Atomic Energy Science and Technology,1997,31(2):161-167
[83] [83] S.Backus,C.G.Durfee,M.M.Murnane et al..High power ultrafast lasers [J].Review of Scientific Instruments,1998,69(3):1207-1223
[84] [84] Y.Nabekawa,K.Kondo,N.Sarukura et al..Terawatt KrF/Ti-sapphire hybrid laser system [J].Opt.Lett.,1993,18(22):1922-1924
[85] [85] Yu Yinshan,Fang Xiaodong,Li Hui et al..Discharge-pumped 100 W XeCl excimer laser [J].Chinese J.Quantum Electron.,1993,13(4):329-331
[86] [86] Yu Yinshan,Fang Xiaodong,Zhou Weidong.Experimental study on a discharging-switch system of a high-power XeCl excimer laser[J].Chinese J.Quantum Electron.,1997,14(1):48-51
[87] [87] I.Smilanski,S.R.Byron,T.R.Burkes.Electrical excitation of an XeCl laser using magnetic pulse compression [J].Appl.Phys.Lett.,1982,40:547
[88] [88] You Libing,Liang Xu,Huang Dewen et al..Design of a switching power supply for high repetition excimer laser [J].Laser Journal,2009,30(3):15-16
[90] [90] Manlio Matera,Roberto Buffa,Giuliano Conforti et al..Resonant transformer command charging system for high repetition rate rare-gas halide lasers[J].Rev.Sci.Instrum.,1983,54(6):716-718
[93] [93] E.C.Piscani,D.Ashworth,J.Byers et al..Continuing 193 nm optical lithography for 32 nm imaging and beyond [C].SPIE,2008,6924:69242I
[94] [94] T.Ishihara,H.Besaucele,C.Maley et al..Long-term reliable operation of a MOPA-based ArF light source for microlithography [C].SPIE,2004,5377:1858-1865
[95] [95] T.Kumazaki,T.Suzuki,S.Tanaka et al..Reliable high power injection locked 6 kHz 60 W laser for ArF immersion lithography [C].SPIE,2008,6924:69242S
[96] [96] M.Yoshino,H.Nakarai,T.Ohta et al..High-power and high-energy stability injection lock laser light source for double exposure or double patterning ArF immersion lithography [C].SPIE,2008,6924:69242R
[97] [97] K.Huggins,T.Tsuyoshi,M.Ong et al..Effects of laser bandwidth on OPE in a modern lithography tool [C].SPIE,2006,6154:61540Z
[98] [98] B.Y.Hsuch,H.Y.Wu,L.Jang et al..Effects of laser bandwidth on tool to tool CD matching [C].SPIE,2008,6924:69244K
[99] [99] K.O′brien,W.J.Dunstan,D.Riggs et al..Performance demonstration of significant availability improvement in lithography light sources using GLX control system [C].SPIE,2008,6924:69242Q
[100] [100] Julie Grondin.Small excimers shine in scientific applications [J].Laser Focus World,2004,40(11):112-115
[101] [101] J.Bublitz,A.Christophersen,W.Schadel.Laser-based detection of PAHs and BTXE-aromatics in oil polluted soil samples [J].Fresenius J.Analytical Chemistry,1996,355(5-6):684-686
[102] [102] T.J.Grundl,J.H.Aldstadt,J.G.Harb.Demonstration of a method for the direct determination of polycyclic aromatic hydrocarbons in submerged sediments [J].Environ.Sci.Technol.,2003,37(6):1189-1197
[103] [103] Dakota Technologies,Inc.http://www.dakotatechnologies.com/
[104] [104] D.S.Thomsona,M.E.Scheina,D.M.Murphy.Particle analysis by laser mass spectrometry WB-57F instrument overview[J].Aerosol Science and Technology,2000,33(1-2):153-169
[105] [105] Gu Xuejun,Fang Li,Zheng Haiyang et al..Development and applications of mobile laser mass spectrometer [J].Chinese J.Analytical Chemistry,2005,33(2):282-285
[106] [106] Hu Huanling,Wang Zhi′en,Wu Yonghua et al..UV-DIAL system for measurements of stratospheric ozone [J].Scientia Atmospherica Sinica,1998,22(5):701-708
[107] [107] D.Dijkkamp,T.Venkatesan,X.D.Wu et al..Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material [J].Appl.Phys.Lett.,1987,51(8):619-621
[108] [108] J.J.Dubowski,D.F.Williams,P.B.Sewell et al..Epitaxial growth of (100) CdTe on (100) GaAs induced by pulsed laser evaporation [J].Appl.Phys.Lett.,1985,46(11):1081-1083
[109] [109] D.K.Fork,D.B.Fenner,G.A.N.Connel et al..Epitaxial yttria-stabilized zirconia on hydrogen-terminated Si by pulsed laser deposition [J].Appl.Phys.Lett.,1990,57(11):1137-1139
[110] [110] J.S.Horwitz,K.S.Grabowski,D.B.Chrisey et al..Insitu deposition of epitaxial PbZrxTi(1-x)O3 thin films by pulsed laser deposition [J].Appl.Phys.Lett.,1991,59(13):1565-1567
[111] [111] Xiaodong Fang,Minoru Tachiki,Takeshi Kobayashi.Excimer-laser ablation of RuO2 observed by a streak camera [J].J.Appl.Phys.,1999,85(4):2402-2407
[112] [112] S.L.Trokel,R.Srinivasan,B.Braren.Excimer laser surgery of the cornea [J].Am.J.Ophthalmol.,1983,96(6):710-715
[113] [113] Jiang Haihe,Yu Yinshan,Lu Zhixian et al..The principle and controlling method of excimer laser photorefrect kerectectomy [J].Acta Laser Biology Sinica,1998,7(4):249-253
[114] [114] Dirx Basting,Gerd Marowsky.ExcimerLaser Technology [M].Santa:Lambda Physik,2001
[115] [115] R.Rox Anderson,John A.Parrish.The optics of human skin [J].J.Investigative Dermatology,1981,77(1):13-19
[116] [116] Pravit Asawanonda,R.Rox Anderson,Yuchiao Chang et al..308-nm excimer laser for the treatment of psoriasis:a dose-response study [J].Arch Dermatol.,2000,136(5):619-624
[117] [117] Li Hongxin,Gao Tianwen.Application of 308 nm excimer laser in the treatment of vitiligo [J].Chin.J.Derm.Venereol.,2006,20(8):507-509
[118] [118] Yang Huilan,Liu Zhongrong,Li Xuemei et al..Treatment of vitiligo with the 308-nm excimer laser:a clinical study [J].Chin.J.Dermatol.,2006,39(1):35-37
[119] [119] Advanced laser processing enables next generation LED and LCD Manufacturing.Coherent Inc.,www.coherent.com
[120] [120] J.S.Im,R.S.Sposili,M.A.Crowder.Single-crystal Si films for thin-film transistor devices [J].Appl.Phys.Lett.,1997,70(25):3434-3436
[121] [121] J.S.Im,M.A.Crowder,R.S.Sposili et al..Controlled super-lateral growth of Si films for microstructural manipulation and optimization[J].Physica Status Solidi(a),1999,166(2):603-617
[122] [122] Coherent Inc.,www.coherent.com
[123] [123] XLX200,The Next Generation Light Source For LTPS Manufacturing.Cymer Inc.,2007.www.cymer.com
Get Citation
Copy Citation Text
Yu Yinshan, You Libing, Liang Xu, Fang Xiaodong. Progress of Excimer Lasers Technology[J]. Chinese Journal of Lasers, 2010, 37(9): 2253
Category: reviews
Received: Jul. 2, 2010
Accepted: --
Published Online: Aug. 19, 2010
The Author Email: Yu Yinshan (ysyu@aiofm.ac.cn)