Electronics Optics & Control, Volume. 32, Issue 1, 21(2025)
Path Planning of Mobile Robot Based on Improved APF-QRRT* Strategy
[4] [4] CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory [J]. International Journal of Systems Science, 2016, 47 (6):1407-1420.
[9] [9] ISLAM F, NASIR J, MALIK U, et al. RRT*-smart: rapid convergence implementation of RRT* towards optimal solution [C]//International Conference on Mechatronics and Automation. Chengdu: IEEE, 2012: 1651-1656.
[10] [10] JEONG I-B, LEE S-J, KIM J-H.Quick-RRT* : triangular inequality-based implementation of RRT* with improved initial solution and convergence rate [J].Expert Systems with Applications, 2019, 123(C): 82-90.
[11] [11] XIE S T, HU J Y, BHOWMICK P, et al. Distributed motion planning for safe autonomous vehicle overtaking via artificial potential field [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):21531-21547.
[12] [12] MONTIEL O, SEPLVEDA R, OROZCO-ROSAS U. Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field [J]. Journal of Intelligent & Robotic Systems,2015,79(2): 237-257.
[13] [13] OROZCO-ROSAS U, MONTIEL O, SEPLVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field [J]. Applied Soft Computing, 2019,77(C):236-251.
Get Citation
Copy Citation Text
LIU Wenhao, YU Shengdong, WU Hongyuan, HU Wenke, LI Xiaopeng, CAI Bofan, MA Jinyu. Path Planning of Mobile Robot Based on Improved APF-QRRT* Strategy[J]. Electronics Optics & Control, 2025, 32(1): 21
Category:
Received: Dec. 18, 2023
Accepted: Jan. 10, 2025
Published Online: Jan. 10, 2025
The Author Email: