Chinese Journal of Lasers, Volume. 44, Issue 2, 201008(2017)

Review of High Power Fiber Laser Pump Coupling Technology

Xiao Qirong1,2、*, Zhang Dayong2, Wang Zehui1, Huang Yusheng1, Zhang Liming2, Li Dan1, Yan Ping1, and Gong Mali1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(76)

    [1] [1] Snitzer E. Optical maser action of Nd+3 in a barium crown glass[J]. Physical Review Letters, 1961, 7(12): 444-446.

    [2] [2] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186.

    [3] [3] Poole S B, Payne D N, Fermann M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 21(17): 737-738.

    [4] [4] Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier[J]. Optics Letters, 1987, 12(11): 888-890.

    [5] [5] Snitzer E, Po H, Hakimi F, et al. Double clad, offset core Nd fiber laser[C]. New Orleans: Optical Fiber Sensors, 1988: PD5.

    [6] [6] Hanna D C, Percival R M, Perry I R, et al. An ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm[J]. Journal of Modern Optics, 1990, 37(4): 517-525.

    [7] [7] Gapontsev V, Samartsev I, Zayats A, et al. Laser-diode pumped Yb-doped single-mode tunable fibre lasers[C]. Proc of Conf Adv Solid State Lasers, Hilton Head, NC, paper WC1-1, 1991: 214.

    [8] [8] IPG Photonics offers world′s first 10 kW single-mode production laser[OL]. (2009-06-17). http://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html.

    [9] [9] Ferin A, Gapontsev V, Fomin V, et al. 17 kW CW laser with 50 μm delivery[C]. Chengdu: 6th International Symposium on High-Power Fiber Lasers and Their Applications, 2012.

    [10] [10] Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power[J]. Electronics Letters, 2004, 40(8): 470-472.

    [11] [11] Jeong Y C, Boyland A J, Sahu J K, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 2009, 13(4): 416-422.

    [12] [12] Wirth C, Schmidt O, Kliner A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 2011, 36(16): 3061-3063.

    [13] [13] Ramachandran S, Khitrov V, Minelly J D, et al. 3 kW single-mode direct diode-pumped fiber laser[C]. SPIE, 2014, 8961: 89610V.

    [14] [14] Peterka P, Kasik I, Matejec V, et al. Novel method for end-pumping of double-clad fiber amplifiers: principle and tailoring the cross section[J]. Biological Trace Element Research, 2005, 75(1-3): 29-41.

    [15] [15] Peterka P, Kaík I, Matějec V, et al. Experimental demonstration of novel end-pumping method for double-clad fiber devices[J]. Optics Letters, 2006, 31(22): 3240-3242.

    [16] [16] Digiovanni D J, Stentz A J. Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices: US5864644[P]. 1999-01-26.

    [17] [17] Fidric B G, Dominic V G, Sanders S. Optical couplers for multimode fibers: US6434302[P]. 2002-08-13.

    [18] [18] Gonthier F, Martineau L, Seguin F, et al. Optical coupler comprising multimode fibers and method of making the same: US7046875[P]. 2006-06-04.

    [19] [19] Kosterin A, Temyanko V, Fallahi M, et al. Tapered fiber bundles for combining high-power diode lasers[J]. Applied Optics, 2004, 43(19): 3893-3900.

    [20] [20] Wang B, Mies E. Review of fabrication techniques for fused fiber components for fiber lasers[C]. SPIE, 2009, 7195: 71950A.

    [21] [21] Wetter A, Faucher M, Lovelady M, et al. Tapered fused-bundle splitter capable of 1 kW CW operation[C]. SPIE, 2007, 6453: 64530I.

    [22] [22] Zhou H, Chen Z, Zhou X, et al. All-fiber 7×1 pump combiner for high power fiber laser[J]. Optics Communications, 2015, 347: 137-140.

    [23] [23] Xiao Q, Yan P, He J, et al. Tapered fused fiber bundle coupler capable of 1 kW laser combining and 300 W laser splitting[J]. Laser Physics, 2011, 21(8): 1415-1419.

    [24] [24] Xiao Q, Ren H, Chen X, et al. Tapered fiber bundle 7×1 end-pumping coupler capable of high power CW operation[J]. IEEE Photonics Technology Letters, 2013, 25(24): 2442-2445.

    [25] [25] Xiao Q, Huang Y, Sun J, et al. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Frontiers of Optoelectronics, 2016, 9(2): 301-305.

    [26] [26] Nielsen M D, Srensen M H, Liem A, et al. High-power PCF-based pump combiners[C]. SPIE, 2007, 6453: 64532C.

    [27] [27] Wieduwilt T, Dellith J, Talkenberg F, et al. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator[J]. Optics Express, 2014, 22(21): 25333-25346.

    [28] [28] Noordegraaf D, Nielsen M D, Skovgaard P M, et al. Pump combiner for air-clad fiber with PM single-mode signal feed-through[C]. Maryland: Conference on Lasers & Electro-optics, 2009.

    [29] [29] Noordegraaf D, Maack M, Skovgaard P M W, et al. 7+1 to 1 pump/signal combiner for air-clad fiber with 15 m MFD PM single-mode signal feed-through[C]. SPIE, 2010, 7580: 75801A.

    [30] [30] Ward B G, Jr, Sipes D L, Tafoya J D. A monolithic pump signal multiplexer for air-clad photonic crystal fiber amplifiers[C]. SPIE, 2010, 7580: 75801C.

    [31] [31] Kim J K, Hagemann C, Schreiber T, et al. Monolithic all-glass pump combiner scheme for high-power fiber laser systems[J]. Optics Express, 2010, 18(12): 13194-13203.

    [32] [32] Ramachandran S, Sipes D L, Tafoya J D, et al. High-power monolithic fiber amplifiers based on advanced photonic crystal fiber designs[C]. SPIE, 2014, 8961: 896114.

    [33] [33] Glebov A L, Leisher P O, Boullet J, et al. Multi-100 W class, fully integrated, monolithic ytterbium-doped photonic-crystal fiber amplifier module[C]. SPIE, 2016, 9730: 97300Q.

    [34] [34] Weber T, Lüthy W, Weber H. Side-pumped fiber laser[J]. Applied Physics B: Lasers and Optics, 1996, 63(2): 131-134.

    [35] [35] Ripin D, Goldberg L. High efficiency side-coupling of light into optical fibres using imbedded V-grooves[J]. Electronics Letters, 1995, 31(25): 2204-2205.

    [36] [36] Li C, Shen D, Song J, et al. Analysis of high-power double-clad fiber lasers side-pumped by multiple diode-lasers in V-groove configuration[C]. The Pacific Rim Conference on Lasers and Electro-Optics, 1999, 3: 805-806.

    [37] [37] Snell K J, Setzler S D. Multiple emitter side pumping method and apparatus for fiber lasers: US6801550[P]. 2004-10-05.

    [38] [38] Koplow J P, Goldberg L, Kliner D A V. Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J]. IEEE Photonics Technology Letters, 1998, 10(6): 793-795.

    [39] [39] Koplow J P, Moore S W, Kliner D A V. A new method for side pumping of double-clad fiber sources[J]. IEEE Journal of Quantum Electronics, 2003, 39(4): 529-540.

    [40] [40] Moore S W, Koplow J P, Hansen A, et al. Embedded-mirror side pumping of double-clad fiber lasers and amplifiers[C]. California: Conference on Lasers & Electro-Optics, 2008: 870-871.

    [41] [41] Hageman W B, Chen Y, Bass M, et al. Diode side pumping of a gain guided, index anti-guided large mode area neodymium fiber laser[C]. San Diego: Advanced Solid-State Photonics, 2010.

    [42] [42] Hamamatsu Photonics K. The fiber disk laser explained[J]. Nature Photonics, 2006: 14-15.

    [43] [43] Herda R, Liem A, Schnabel B, et al. Efficient side-pumping of fibre lasers using binary gold diffraction gratings[J]. Electronics Letters, 2003, 39(3): 276-277.

    [44] [44] Zhang F, Wang C, Geng R, et al. Novel grating couplers for diode-bars multi-point side-pumping double-clad fiber[J]. Optics Communications, 2007, 279(2): 346-355.

    [45] [45] Huang C W, Huang D W, Chang C L, et al. Demonstration of side coupling between high power laser diode array and double-clad fiber using sub-wavelength grating[C]. Maryland: Lasers & Electro-Optics, 2011: 1-2.

    [46] [46] Huang C W, Chang C L, Jheng D Y, et al. Symmetrically side-pumped 10-W ytterbium-doped fiber laser by sub-wavelength grating coupler[C]. Munich: The European Conference on Lasers and Electro-Optics, 2011.

    [47] [47] Lin S L, Lee Y W, Hsu K Y, et al. Design of resonantly side-pumped 1645-nm Er:YAG crystal fiber lasers with grating couplers[C]. Kyoto: Conference on Lasers and Electro-Optics Pacific Rim, 2013: 1-2.

    [48] [48] Hakimi F, Hakimi H. New side coupling method for double-clad fiber amplifiers[C]. Maryland: Conference on Lasers & Electro-Optics, 2001: 116.

    [49] [49] Ou P, Yan P, Gong M, et al. Coupling efficiency of angle-polished method for side-pumping technology[J]. Optical Engineering, 2004, 43(4): 816-821.

    [50] [50] Ou P, Yan P, Gong M, et al. Multi-coupler side-pumped Yb-doped double-clad fibre laser and pump light leakage at coupler[J]. Electronics Letters, 2004, 40(7): 418-419.

    [51] [51] Xiao Q R, Yan P, Yin S, et al. 100 W ytterbium-doped monolithic fiber laser with fused angle-polished side-pumping configuration[J]. Laser Physics Letters, 2010, 8(2): 125-129.

    [52] [52] Xiao Q, Yan P, Wang Y, et al. Fused angle-polished multi-points side-pumping coupler for monolithic fiber lasers and amplifiers[J]. Optics Communications, 2012, 285(8): 2137-2143.

    [53] [53] Larsen J J, Vienne G. Side pumping of double-clad photonic crystal fibers[J]. Optics Letters, 2004, 29(5): 436-438.

    [54] [54] Grobelny A, Witkowski J, Beres-Pawlik E. The numerical predictions of the parameters of asymmetrical couplers which pump double-clad lasers[C]. Nottingham: International Conference on Transparent Optical Networks, 2006: 185-188.

    [55] [55] Beres-Pawlik E, Grobelny A. Construction of a side pumped double-clad fiber using polished couplers[J]. Optics Communications, 2010, 283(11): 2363-2368.

    [56] [56] Jauregui C, Bhme S, Wenetiadis G, et al. Side-pump combiner for all-fiber monolithic fiber lasers and amplifiers[J]. Journal of the Optical Society of America B, 2010, 27(5): 1011-1015.

    [57] [57] Polynkin P, Temyanko V, Mansuripur M, et al. Efficient and scalable side pumping scheme for short high-power optical fiber lasers and amplifiers[J]. IEEE Photonics Technology Letters , 2004, 16(9): 2024-2026.

    [58] [58] Chen H, Zou S, Yu H, et al. Taper fused fiber bundle 1×4 coupler for high power splitting [J]. IEEE Photonics Technology Letters, 2015, 27(24): 2527-2530.

    [59] [59] Theeg T, Sayinc H, Neumann J, et al. Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers[J]. Optics Express, 2012, 20(27): 28125-28141.

    [60] [60] Sayinc H S, Theeg T, Pelegrina-Bonilla G,et al. New pump and signal combiners[C]. Barcelona: Specialty Optical Fibers, 2014: SoW1B.2.

    [61] [61] Theeg T, Sayinc H, Neumann J, et al. Side pumping scheme for all-fiber counter-pumping of high power single-frequency fiber amplifiers[C]. Munich: The European Conference on Lasers and Electro-Optics, 2013: CJ_1_2.

    [62] [62] Theeg T, Sayinc H, Overmeyer L, et al. Manufacturing and optical characterization of side-pumped high power fiber combiner for LMA-fibers[C]. Munich: The European Conference on Lasers and Electro-Optics, 2015: CE_2_4.

    [63] [63] Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1864-1867.

    [64] [64] Wang Xuejiao, Xiao Qirong, Yan Ping, et al. 3000 W direct-pumping all-fiber laser based on domestically produced fiber[J]. Acta Physica Sinica, 2015, 64(16) : 257-262.

    [65] [65] Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 2016, 24(6): 6758-6768.

    [66] [66] Tan Q, Ge T, Zhang X, et al. Cascaded combiners for a high power CW fiber laser[J]. Laser Physics, 2016, 26(2): 025102.

    [67] [67] Yan P, Gong M, Li C, et al. Distributed pumping multifiber series fiber laser[J]. Optics Express, 2005, 13(7): 2699-2706.

    [68] [68] Chen Xiao, Xiao Qirong, Jin Guangyong, et al. High output power kW class of pump light by (N+1)×1 fiber couplers in a cascaded structure[J]. Acta Photonica Sinica, 2015, 44(6): 28-32.

    [69] [69] Grudinin A B, Payne D N, Turner P W, et al. Multi-fibre arrangements for high power fibre lasers and amplifiers: US6826335[P]. 2004-11-30.

    [70] [70] Gapontsev V P, Fomin V, Platonov N. Powerful fiber laser system: US7593435[P]. 2009-09-22.

    [71] [71] Zhan H, Wang Y, Peng K, et al. 2 kW (2+1) GT-wave fiber amplifier[J]. Laser Physics Letters, 2016, 13(4): 045103.

    [72] [72] Zhan H, Wang Y, Peng K, et al. 3.38 kW (3+1) GT-wave fiber[C]. CLEO: Applications and Technology, 2016: ATu3K.7.

    [73] [73] Lin Aoxiang, Zhan Huan, Huang Zhihua, et al. 5 kW (N+1) GT-wave fiber [J]. High Power Laser and Particle Beams, 2016, 28(7): 197-198.

    [74] [74] Xiao Q, Ren H, Yan P, et al. Theoretical study of pumping absorption in a co-linear side-pumping coupler[J]. Optics Communications, 2013, 300(14): 220-224.

    [75] [75] Xiao Q. Theoretical study of pump absorption of colinear side-pumping coupler with pumping and absorption loops[J]. Optical Engineering, 2013, 52(9): 096111.

    [76] [76] Xiao Q, Ren H, Xiao C, et al. Research on characteristics of co-linear side-pumping couplers with special double-clad fibers[J]. Journal of Modern Optics, 2014, 61(4): 307-314.

    CLP Journals

    [1] LEI Cheng-min, GU Yan-ran, CHEN Zi-lun, HOU Jing. Developments of high power all-fiber side-pumping combiner[J]. Optics and Precision Engineering, 2018, 26(7): 1561

    Tools

    Get Citation

    Copy Citation Text

    Xiao Qirong, Zhang Dayong, Wang Zehui, Huang Yusheng, Zhang Liming, Li Dan, Yan Ping, Gong Mali. Review of High Power Fiber Laser Pump Coupling Technology[J]. Chinese Journal of Lasers, 2017, 44(2): 201008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Sep. 12, 2016

    Accepted: --

    Published Online: Feb. 22, 2017

    The Author Email: Xiao Qirong (xiaoqirong08@gmail.com)

    DOI:10.3788/cjl201744.0201008

    Topics