Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0815006(2025)
Improved RRU-Net for Image Splicing Forgery Detection
Fig. 7. Generated partial forgery plots and ground truth. (a1)‒(a3) Tamper images; (b1)‒(b3) tamper images corresponds to ground truth
Fig. 8. Partial forgery of images with different algorithm visualizations. (a) Forgery images; (b) ground truth; (c) DeepLab V3 visualization of inspection map; (d) ManTra-Net visualization of inspection map;(e) visualization of detection plot of PSCC-Net; (f) MVSS-Net++ visual detection map; (g) U-Net visualization of inspection map;(h) RRU-Net visualization of inspection map;(i) this algorithm visualizes detection map
Fig. 9. Results of different models for different datasets under Gaussian noise attack. (a) Homemade; (b) CASIA 1.0; (c) IMD 2020
Fig. 10. Results of different models for different datasets under JPEG compression attack. (a) Homemade; (b) CASIA 1.0; (c) IMD 2020
Fig. 11. Results of different models for different datasets under darkening attack. (a) Homemade; (b) CASIA 1.0; (c) IMD 2020
|
|
|
|
|
Get Citation
Copy Citation Text
Ying Ma, Yilihamu Yaermaimaiti, Shuoqi Cheng, Yazhou Su. Improved RRU-Net for Image Splicing Forgery Detection[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0815006
Category: Machine Vision
Received: Jul. 9, 2024
Accepted: Oct. 8, 2024
Published Online: Mar. 21, 2025
The Author Email:
CSTR:32186.14.LOP241655