Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0815006(2025)

Improved RRU-Net for Image Splicing Forgery Detection

Ying Ma1、*, Yilihamu Yaermaimaiti1, Shuoqi Cheng1, and Yazhou Su2
Author Affiliations
  • 1School of Electrical Engineering, Xinjiang University, Urumqi 830017, Xinjiang , China
  • 2State Grid Xinjiang Electric Power Co., Ltd., Marketing Service Center, Urumqi 830013, Xinjiang , China
  • show less
    Figures & Tables(16)
    Improved RRU-Net algorithm structure
    RRU-Net algorithm structure
    Three SRM filters to extract noise signatures
    Noise signature map generation process
    FPN structure
    A2-Nets dual-attention network structure
    Generated partial forgery plots and ground truth. (a1)‒(a3) Tamper images; (b1)‒(b3) tamper images corresponds to ground truth
    Partial forgery of images with different algorithm visualizations. (a) Forgery images; (b) ground truth; (c) DeepLab V3 visualization of inspection map; (d) ManTra-Net visualization of inspection map;(e) visualization of detection plot of PSCC-Net; (f) MVSS-Net++ visual detection map; (g) U-Net visualization of inspection map;(h) RRU-Net visualization of inspection map;(i) this algorithm visualizes detection map
    Results of different models for different datasets under Gaussian noise attack. (a) Homemade; (b) CASIA 1.0; (c) IMD 2020
    Results of different models for different datasets under JPEG compression attack. (a) Homemade; (b) CASIA 1.0; (c) IMD 2020
    Results of different models for different datasets under darkening attack. (a) Homemade; (b) CASIA 1.0; (c) IMD 2020
    • Table 1. Dataset classification

      View table

      Table 1. Dataset classification

      DatasetHomemadeCASIA 1.0IMD 2020
      AUSplicAUSplic
      Training sets18861
      Validation sets990
      Testing sets990462461253300
    • Table 2. Ablation experiments

      View table

      Table 2. Ablation experiments

      MethodLossF1
      RRU-Net0.16460.7615
      RRU-Net+F0.08720.8046
      RRU-Net+A2-Nets0.13040.7816
      RRU-Net+F+A2-Nets0.03900.8112
      Ours=RRU-Net+N+F+A2-Nets0.01850.9456
    • Table 3. F1 and accuracy of different algorithms on homemade dataset

      View table

      Table 3. F1 and accuracy of different algorithms on homemade dataset

      MethodAccuracyF1
      DeepLab V30.73280.7392
      ManTra-Net0.96430.7731
      PSCC-Net0.81820.8906
      MVSS-Net++0.87330.7909
      U-Net0.61960.6758
      RRU-Net0.73510.7615
      Ours0.90630.9456
    • Table 4. F1 and accuracy of different algorithms on common datasets

      View table

      Table 4. F1 and accuracy of different algorithms on common datasets

      MethodCASIA 1.0IMD 2020
      AccuracyF1AccuracyF1
      DeepLab V30.67550.54110.64030.6670
      ManTra-Net0.86920.13430.88430.1123
      PSCC-Net0.87590.54570.92910.6779
      MVSS-Net++0.86760.74990.74200.6829
      U-Net0.71540.61240.82000.5580
      RRU-Net0.73660.76110.84110.7142
      Ours0.91150.85830.91770.8117
    • Table 5. Robustness F1 variance of different algorithms on different datasets

      View table

      Table 5. Robustness F1 variance of different algorithms on different datasets

      MethodsHomemadeCASIA 1.0IMD 2020
      Noise VarJPEG VarBright VarNoise VarJPEG VarBright VarNoise VarJPEG VarBright Var
      DeepLab V33.8×10-51.2×10-52.8×10-31.6×10-34.4×10-63.9×10-41.4×10-52.4×10-67.3×10-3
      ManTra-Net1.5×10-21.7×10-32.9×10-34.1×10-49.1×10-51.1×10-33.3×10-58.9×10-51.1×10-3
      PSCC-Net7.6×10-53.1×10-54.6×10-41.8×10-47.3×10-51.2×10-41.0×10-33.7×10-41.8×10-4
      MVSS-Net++1.4×10-41.6×10-45.9×10-41.9×10-47.3×10-51.8×10-46.3×10-52.1×10-58.4×10-5
      U-Net3.8×10-39.9×10-54.4×10-31.3×10-22.6×10-39.4×10-41.3×10-39.3×10-59.0×10-4
      RRU-Net8.2×10-56.0×10-73.6×10-31.5×10-47.0×10-41.4×10-39.3×10-54.3×10-41.7×10-3
      Ours2.3×10-41.1×10-42.0×10-43.0×10-47.9×10-59.2×10-53.9×10-42.9×10-57.0×10-4
    Tools

    Get Citation

    Copy Citation Text

    Ying Ma, Yilihamu Yaermaimaiti, Shuoqi Cheng, Yazhou Su. Improved RRU-Net for Image Splicing Forgery Detection[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0815006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 9, 2024

    Accepted: Oct. 8, 2024

    Published Online: Mar. 21, 2025

    The Author Email:

    DOI:10.3788/LOP241655

    CSTR:32186.14.LOP241655

    Topics