Journal of Quantum Optics, Volume. 27, Issue 4, 267(2021)
Two-mode Unitary Phase Operator in Quantum Optics and Its Classical Correspondence
[1] [1] SCHLEICH. Quantum optics in phase space (in English)[M]. World Book Publishing Co., Beijing. 2010.
[2] [2] FAN H Y, LV C H. The phase space theory of quantum mechanics[M]. Shanghai: Shanghai Jiaotong University Press. 2012.
[3] [3] LIANG C B. On the quantization of classical systems[J]. Journal of Beijing Normal University (Natural Science), 1994, 30(001): 67-73.
[4] [4] YUAN H C. Advances and applications of operator ordering theory in quantum optics[D]. Shanghai: Shanghai Jiaotong University, 2011.
[5] [5] SUSSKIND L, GLOGOWER J. Quantum mechanical phase and time operator[J]. Physics Physique Fizika, 1964, 1(1): 49. DOI: 10.1103/PhysicsPhysiqueFizika.1.49.
[6] [6] CHRISTENSEN A S, KROMANN J C, JENSEN J H, et al. Intermolecular interactions in the condensed phase: Evaluation of semi-empirical quantum mechanical methods[J]. Journal of Chemical Physics, 2017, 147(16): 4911-4912. DOI: 10.1063/1.4985605.
[7] [7] ROMATSCHKE P. Quantum mechanical out-of-time-ordered-correlators for the anharmonic (quartic) oscillator[J]. Journal of High Energy Physics, 2021, 2021(1): 30. DOI: 10.1007/jhep01(2021)030.
[8] [8] EDSTRM A, LUBK A, RUSZ J. Quantum-mechanical treatment of atomic resolution differential phase contrast imaging of magnetic materials[J]. Physics Review B, 2019, 99: 174428. DOI: 10.1103/PhysRevB.99.174428.
[9] [9] PEGG D T, BARNETT S M. Phase properties of the quantized single-mode electromagnetic field[J]. Physical Review A, 1989, 39(4): 1665-1675. DOI: 10.1103/PhysRevA.39.1665.
[10] [10] LIU N, HUANG S, LI J Q, et al. Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature[J]. Acta Physica Sinica-Chinese Edition-, 2019, 68(19): 193701. DOI: 10.7498/aps.68.20190347.
[11] [11] SALAH A, ABDEL-RADY A S, OSMAN A, et al. Quantum Phase Properties in Collective Three-Level V-Type System with Diamagnetic Term[J]. International Journal of Theoretical Physics, 2019, 58(8): 2435-2450. DOI: 10.1007/s10773-019-04135-2.
[12] [12] RAMOS-PRIETO I, ANDRADE-MORALES L A, SOTO-EGUIBAR F, et al. Pegg-Barnett coherent states[J]. Journal of the Optical Society of America B, 2020, 37(2): 370-375. DOI:10.1364/JOSAB.379075.
[13] [13] HOROSHKO D B, PATERA G, KOLOBOV M I. Quantum teleportation of qudits by means of generalized quasi-Bell states of light[J]. Optics Communications, 2019, 447: 67-73. DIO: 10.1016/j.optcom.2019.04.088.
[14] [14] HUANG S M. Entropy squeezing Amplitude-squared squeezing Quantum phase[D]. Fuzhou: Fujian Normal University, 2004. DOI:10.7666/d.y619145.
[15] [15] FAN H Y. Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate |η[J]. Journal of Physics A Mathematical & General, 2002, 35(4): 1007-1012. DOI: 10.1088/0305-4470/35/4/313.
[16] [16] FAN H Y. Representation and transformation theory in quantum mechanics[M]. Shanghai: Shanghai Science and Technology Press, 1997: 43-44.
[17] [17] FAN H Y, WENG H G. Simple Approach for Deriving the Weyl Correspondence Product Formula[J]. Communications in Theoretical Physics, 1992, 18(3): 343-346. DOI: 10.1088/0253-6102/18/3/343.
[18] [18] FAN H Y , ZAIDI H R. Application of IWOP technique to the generalized Weyl correspondence[J]. Physics Letters A, 1987, 124(6-7): 303-307. DOI: 10.1016/0375-9601(87)90016-8.
[19] [19] WIGNER E. On the Quantum Correction for Thermodynamic Equilibrium[J]. Phys Rev, 1932, 40(40): 749-759.
Get Citation
Copy Citation Text
ZHAN De-hui, FAN Hong-yi. Two-mode Unitary Phase Operator in Quantum Optics and Its Classical Correspondence[J]. Journal of Quantum Optics, 2021, 27(4): 267
Category:
Received: May. 1, 2021
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: ZHAN De-hui (dhzhan@mail.ustc.edu.cn)