Laser & Optoelectronics Progress, Volume. 55, Issue 6, 061004(2018)

Face Recognition Based on Improved Gradient Local Binary Pattern

Huixian Yang1、1; , Yong Chen、1*; *; , Fei Zhang1、1; , and Tongtong Zhou2、2;
Author Affiliations
  • 1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, China
  • 2 College of Mechanical and Electrical Engineering, Hunan Applied Technology University,Changde, Hunan 415000, China
  • show less
    Figures & Tables(17)
    Sobel operator. (a) Horizontal direction; (b) vertical direction; (c) 45° direction; (d) 135° direction
    (a) Sampling point; (b) LBP encoding; (c) GLBP encoding
    Robustness of GLBP versus LBP. (a) Original encoding; (b) noise encoding
    (a) Traditional feature extraction; (b) improved feature extraction
    IGLBP encoding process
    Flow chart of the proposed algorithm
    Flow chart of IGLBP feature extraction
    (a) Training sample; (b) AR expression subset; (c) AR illumination subset; (d) AR partial occlusion subset A; (e) AR partial occlusion subset B
    (a) Training sample; (b) CAS-PEAL expression subset; (c) CAS-PEAL background subset; (d) CAS-PEAL accessory subset
    YALE face library
    • Table 1. Recognition rate on AR database of different algorithms%

      View table

      Table 1. Recognition rate on AR database of different algorithms%

      AlgorithmFacialexpressionsubsetIlluminationsubsetPartialocclusionsubset APartialocclusionsubset B
      LBP93.3392.3391.6772.67
      LDP96.3393.0090.0071.67
      CSLBP96.6795.0087.6773.00
      LGBP94.6799.0094.3390.33
      IGLBP99.6799.0098.6794.33
    • Table 2. Recognition rate on CAS-PEAL database of different algorithms%

      View table

      Table 2. Recognition rate on CAS-PEAL database of different algorithms%

      AlgorithmBackgroundsubsetExpressionsubsetAccessorysubset
      LBP91.0089.0091.00
      LDP97.3395.0086.00
      CSLBP93.2587.2590.25
      LGBP97.5291.2593.00
      IGLBP99.7596.2597.00
    • Table 3. Recognition rate on YALE database of different algorithms%

      View table

      Table 3. Recognition rate on YALE database of different algorithms%

      AlgorithmNumber of sample
      2345
      LBP73.2577.6678.0078.33
      LDP78.0081.7582.3484.75
      CSLBP79.3782.0683.0085.72
      LGBP85.3290.0992.3393.25
      IGLBP86.6192.0593.5794.53
    • Table 4. Results on CAS-PEAL background subset of different algorithms after adding different variances of Gaussian noise%

      View table

      Table 4. Results on CAS-PEAL background subset of different algorithms after adding different variances of Gaussian noise%

      Algorithmσ=0σ=0.0001σ=0.0002σ=0.0003σ=0.0004δ
      LBP91.0036.2516.009.256.7592.58
      LDP97.3395.0093.2590.5087.759.84
      CSLBP93.2590.2583.5276.2565.2530.03
      LGBP97.5296.2595.7594.0093.254.38
      IGLBP99.7599.5099.2599.0098.501.25
    • Table 5. Results on CAS-PEAL expression subset of different algorithms after adding different variances of Gaussian noise%

      View table

      Table 5. Results on CAS-PEAL expression subset of different algorithms after adding different variances of Gaussian noise%

      Algorithmσ=0σ=0.0001σ=0.0002σ=0.0003σ=0.0004δ
      LBP89.0028.5013.507.256.2592.98
      LDP95.0091.2587.2582.9878.0017.89
      CSLBP87.2583.5079.2574.7563.2527.51
      LGBP91.2590.5089.0088.5086.754.93
      IGLBP96.2592.5092.0091.2590.755.71
    • Table 6. Results on CAS-PEAL accessory subset of different algorithms after adding different variances of Gaussian noise%

      View table

      Table 6. Results on CAS-PEAL accessory subset of different algorithms after adding different variances of Gaussian noise%

      Algorithmσ=0σ=0.0001σ=0.0002σ=0.0003σ=0.0004δ
      LBP91.0026.2514.008.506.5092.86
      LDP86.0083.5079.2574.7571.6716.66
      CSLBP90.2597.2581.0074.7563.0030.19
      LGBP93.0091.2590.5089.7587.655.75
      IGLBP97.0094.7594.5093.5092.754.90
    • Table 7. Feature dimensions and average time of different algorithms on YALE database

      View table

      Table 7. Feature dimensions and average time of different algorithms on YALE database

      AlgorithmFeature dimensionT1 /msT2 /ms
      LBP1638430.323.2
      LDP16384439.122.9
      CSLBP102423.62.5
      LGBP655360883.5102.6
      IGLBP1638494.523.0
    Tools

    Get Citation

    Copy Citation Text

    Huixian Yang, Yong Chen, Fei Zhang, Tongtong Zhou. Face Recognition Based on Improved Gradient Local Binary Pattern[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 9, 2017

    Accepted: --

    Published Online: Sep. 11, 2018

    The Author Email: Yong Chen ( 279474385@qq.com)

    DOI:10.3788/LOP55.061004

    Topics