Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0837001(2025)

HSV Space-Based Nonlinear Adaptive Low-Light Image Enhancement Algorithm

Chengkang Yu1,2、* and Guangliang Han1
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(18)
    Processing effects of the algorithm of reference [11]. (a) Original images; (b) original image inversion; (c) results of the algorithm of reference [11]
    Flow chart of the proposed algorithm
    Comparison of adaptive gamma correction processing effects. (a) Original images; (b) conventional gamma correction; (c) adaptive gamma correction
    Schematic illustration of the processing of the luminance adaptive contrast enhancement algorithm
    Adaptive image fusion effects. (a) Original images; (b) proposed algorithm without the adaptive image fusion algorithm; (c) proposed algorithm
    Comparison results of the LOL dataset. (a) Original image; (b) Dong algorithm; (c) KinD++ algorithm; (d) RetinexNet algorithm; (e) Retinexformer algorithm; (f) EnlightGAN algorithm; (g) Zero-DCE algorithm; (h) proposed algorithm
    Comparison results of the DICM dataset. (a) Original image; (b) Dong algorithm; (c) KinD++ algorithm; (d) RetinexNet algorithm; (e) Retinexformer algorithm; (f) EnlightGAN algorithm; (g) Zero-DCE algorithm; (h) proposed algorithm
    Comparison results of the LIME dataset. (a) Original image; (b) Dong algorithm; (c) KinD++ algorithm; (d) RetinexNet algorithm; (e) Retinexformer algorithm; (f) EnlightGAN algorithm; (g) Zero-DCE algorithm; (h) proposed algorithm
    Comparison results of the NPE dataset. (a) Original image; (b) Dong algorithm; (c) KinD++ algorithm; (d) RetinexNet algorithm; (e) Retinexformer algorithm; (f) EnlightGAN algorithm; (g) Zero-DCE algorithm; (h) proposed algorithm
    Comparison of the enhancement effects of different modules on low-light images. (a) Original images; (b) ABA; (c) -w/o BACE; (d) -w/o AIF; (e) proposed algorithm
    Enhancement effects of different gamma values on images with different gray mean values. (a) Original images; (b) γ=2; (c) γ=6; (d) γ=12; (e) γ=20
    Enhancement effects of different gamma values on images with different gray mean values. (a) RGM∈0,25; (b) RGM∈25,100;(c) RGM∈100,256
    • Table 1. PSNR evaluation results of different algorithms

      View table

      Table 1. PSNR evaluation results of different algorithms

      AlgorithmLOLDICMLIMENPEAverage
      Dong10.424613.526311.887212.576712.1037
      KinD++7.841113.327811.912012.826511.4769
      RetinexNet8.437811.65829.923011.316810.3340
      Retinexformer7.797510.448513.178212.519610.9860
      EnlightGAN10.275112.771510.669713.490711.8017
      Zero-DCE13.048814.640312.762613.869913.5804
      Proposed algorithm15.890717.265515.265716.514016.2340
    • Table 2. SSIM evaluation results of different algorithms

      View table

      Table 2. SSIM evaluation results of different algorithms

      AlgorithmLOLDICMLIMENPEAverage
      Dong0.15970.48910.38780.57330.4025
      KinD++0.15650.50010.32220.54690.3816
      RetinexNet0.11690.43630.45590.58600.3988
      Retinexformer0.17700.39240.45770.55470.3955
      EnlightGAN0.17950.48450.36180.64940.4188
      Zero-DCE0.26400.52800.42320.63400.4623
      Proposed algorithm0.31140.57620.49400.67690.5146
    • Table 3. NIQE evaluation results of different algorithms

      View table

      Table 3. NIQE evaluation results of different algorithms

      AlgorithmLOLDICMLIMENPEAverage
      Dong12.45609.030011.981015.269312.1841
      KinD++10.183010.409114.208914.859512.4151
      RetinexNet12.39508.677010.885012.136011.0233
      Retinexformer12.243010.897014.700015.938013.4445
      EnlightGAN10.260010.333014.778016.478312.9623
      Zero-DCE12.974013.424011.987015.646013.5078
      Proposed algorithm11.97848.331110.838113.748211.2240
    • Table 4. BRISQUE evaluation results of different algorithms

      View table

      Table 4. BRISQUE evaluation results of different algorithms

      AlgorithmLOLDICMLIMENPEAverage
      Dong0.49640.54000.63970.63090.5768
      KinD++0.50300.48710.44870.45590.4737
      RetinexNet0.50400.49600.54600.56600.5280
      Retinexformer0.50500.51500.46400.53100.5038
      EnlightGAN0.49900.52600.49200.49390.5027
      Zero-DCE0.49600.54600.49700.48700.5065
      Proposed algorithm0.48830.50620.46100.46010.4789
    • Table 5. Runtime of different images processed by different algorithms

      View table

      Table 5. Runtime of different images processed by different algorithms

      AlgorithmRunning time /s
      LOLDICMLIMENPEAverage
      Dong0.44670.69091.28531.46150.9711
      KinD++4.03996.61725.49004.22465.0929
      RetinexNet0.62130.96140.87730.68520.7863
      Retinexformer0.24450.34280.46590.44200.3738
      EnlightGAN0.21440.28350.25860.21920.2439
      Zero-DCE0.033170.06920.22010.26240.1462
      Proposed algorithm0.84751.05281.12420.78870.9533
    • Table 6. Comparison of enhancement effects of different modules on low-light images

      View table

      Table 6. Comparison of enhancement effects of different modules on low-light images

      ABABACEAIFPSNRSSIMNIQEBRISQUE
      ××12.82640.452313.13970.5844
      ×16.03540.496312.15090.4789
      ×15.46670.530613.00090.5868
      19.03640.586912.13570.4681
    Tools

    Get Citation

    Copy Citation Text

    Chengkang Yu, Guangliang Han. HSV Space-Based Nonlinear Adaptive Low-Light Image Enhancement Algorithm[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0837001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Aug. 7, 2024

    Accepted: Sep. 24, 2024

    Published Online: Apr. 3, 2025

    The Author Email:

    DOI:10.3788/LOP241817

    CSTR:32186.14.LOP241817

    Topics