Chinese Journal of Lasers, Volume. 47, Issue 5, 0502003(2020)

Multiple Targets Technology Optimization Based Grey Relative Analysis of 18Ni300 Die Steel Formed by Selective Laser Melting

Xiayu Chen, Weidong Huang*, Weijie Zhang, Zhangpeng Lai, and Guofu Lian
Author Affiliations
  • School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China
  • show less
    Figures & Tables(22)
    Structural representation of SLM forming equipment
    SEM image of 18Ni300 die steel powder
    Direction of choosing measuring points of hardness
    Forming samples
    Normal probability plot of prediction model
    Residual plot of prediction model
    Main effect plots of relative density
    Metallurgy porosity in sample No.22
    Contrast of normal weld and sunk weld. (a) Normal weld; (b) sunk weld
    Powder bed diagram of powder thickness over the range of particle size
    Main effect plots of hardness
    SEM image of experiment sample No.18
    Main effect plots of wear resistance
    Surface wear morphology of sample No.28
    Response optimized plot of GRG
    Internal morphology of verified sample
    • Table 1. Chemical composition of 18Ni300 die steel powder

      View table

      Table 1. Chemical composition of 18Ni300 die steel powder

      ElementCSPSiMnAlTiMoCoNiFe
      Mass fraction /%0.030.010.010.10.10.150.85.209.5018Bal.
    • Table 2. Levels of experiment parameters

      View table

      Table 2. Levels of experiment parameters

      ParameterSymbolLevel of parameter
      Level 1Level 2Level 3Level 4Level 5
      Laser power /WA150200250300350
      Scanning speed /(mm·s-1)B650700750800850
      Hatching distance /mmC0.050.080.110.140.17
      Powder coating thickness /mmD0.020.030.040.050.06
    • Table 3. Data of forming samples

      View table

      Table 3. Data of forming samples

      No.Forming parameterResponse value
      A /WB /(mm·s-1)C /mmD /mmRelativedensity (RD) /%Hardness(HD) /HRCWear resistance(WR) /μm3
      13008000.080.0399.827.6430780
      23507500.110.0499.935.51226820
      32507500.110.0498.239.7883720
      43007000.140.0597.543.4533680
      52007000.140.0593.833.5450080
      62507500.110.0499.239.11081940
      72007000.080.0596.640.1513880
      83007000.080.0599.442.91454260
      92008000.140.0596.033.61825140
      101507500.110.0493.238.3845880
      113008000.080.0599.636.5648780
      122007000.080.0398.540.91901920
      132507500.110.0299.936.1915040
      142506500.110.0499.436.5998560
      152507500.050.0498.737.3831540
      163007000.140.0399.639.3156060
      173008000.140.0595.739.2816140
      182008000.080.0399.940.9917560
      193007000.080.0399.739.0860520
      202507500.110.0699.840.7818740
      213008000.140.0396.138.1600280
      222008000.080.0594.038.2621960
      232007000.140.0397.939.71461940
      242008000.140.0392.237.11505180
      252507500.110.0495.840.6651760
      262507500.110.0494.941.1604780
      272508500.110.0495.140.6415180
      282507500.110.0498.837.3765940
      292507500.110.0498.839.0724240
      302507500.170.0492.040.7290960
    • Table 4. Principal component analysis results

      View table

      Table 4. Principal component analysis results

      ParameterPrincipalcomponent 1Principalcomponent 2Principalcomponent 3EigenvalueContribution /%
      Relative density-0.6810.072-0.7281.191039.7
      Hardness0.4170.856-0.3050.975832.5
      Wear resistance0.601-0.512-0.6130.833227.8
    • Table 5. Result ofexperimental data processing

      View table

      Table 5. Result ofexperimental data processing

      No.NormalizationGRCGRG
      RDHDWRRDHDWR
      10.012658210.15735510.97530860.33333330.76062390.7070
      200.50.613313810.50.44910970.6844
      30.21518980.23417720.41679180.69911500.68103450.54538010.6505
      40.303797400.21629450.622047210.69803690.7660
      50.77215180.62658220.16840980.39303480.44382020.74804400.5082
      60.08860750.27215180.53032890.84946240.64754100.48528190.6826
      70.41772150.20886070.20495340.54482760.70535710.70926670.6427
      80.06329110.0316450.74358770.88764050.94047620.40206250.7698
      90.49367080.62025310.95602170.50318470.44632770.34340150.4403
      100.84810120.32278480.39511760.37089200.60769230.55858580.5000
      110.03797460.43670880.28222190.92941180.53378380.63920480.7202
      120.17721510.158227810.73831780.75961540.33333330.6327
      1300.46202530.434731310.51973680.53491310.7146
      140.06329110.43670890.48257020.88764040.53378380.50886950.6673
      150.15189870.38607590.38690390.76699030.56428570.56375900.6446
      160.03797460.259493700.92941180.658333310.8609
      170.531645570.26582280.37808300.48466260.65289260.56942220.5629
      1800.15822780.436174710.75961540.53408830.7924
      190.02531640.27848100.40350310.95180720.64227640.55340150.7405
      200.01265820.17088610.37957220.97530860.74528300.56845810.7874
      210.48101260.33544300.25444190.50967740.59848480.66274150.5811
      220.7468354430.3291139240.2668598860.40101520.60305340.65200960.5365
      230.2531645570.2341772150.7479866660.66386550.68103450.40064530.5963
      240.9746835440.3987341770.7727538290.33905580.55633800.39284890.4246
      250.5189873420.177215190.2839288370.49068320.73831780.63781300.6121
      260.6329113920.145569620.2570194630.44134080.77450980.6604850.6105
      270.6075949370.177215190.148419690.45142860.73831780.77110550.6335
      280.1392405060.3860759490.349329270.78217820.56428570.58869980.6576
      290.1392405060.2784810130.3254441940.78217820.64227640.60573450.6877
      3010.1708860760.077268510.33333330.74528300.86614810.6153
    • Table 6. Variance analysis of prediction model

      View table

      Table 6. Variance analysis of prediction model

      SourceDegree of freedomSum of squareMean squareFP
      Prediction model140.2403640.0171693.910.006
      Error150.0658230.004388
      Total290.306187
      Standard deviationR2=78.50%
    Tools

    Get Citation

    Copy Citation Text

    Xiayu Chen, Weidong Huang, Weijie Zhang, Zhangpeng Lai, Guofu Lian. Multiple Targets Technology Optimization Based Grey Relative Analysis of 18Ni300 Die Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 0502003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Sep. 6, 2019

    Accepted: Dec. 11, 2019

    Published Online: May. 12, 2020

    The Author Email: Weidong Huang (hwd@fjut.edu.cn)

    DOI:10.3788/CJL202047.0502003

    Topics