Acta Laser Biology Sinica, Volume. 29, Issue 2, 176(2020)
The Establishment of the Zebrafish miR-196a-1 Knockout Lines
[1] [1] KIMMEL C B. Genetics and early development of zebrafish[J]. Trends in Genetics, 1989, 5(8): 283-288.
[2] [2] KIMMEL C B, BALLARD W W, KIMMEL S R, et al. Stages of embryonic development of zebrafish[J]. Developmental Dynamics, 1995, 203(3): 253-310.
[3] [3] KIKUCHI K. Dedifferentiation, transdifferentiation, and proliferation:mechanisms underlying cardiac muscle regeneration in zebrafish[J]. Current Pathobiology Reports, 2015, 3(1): 81-88.
[4] [4] TSURUWAKA Y, KONISHI M, SHIMADA E. Loss of wwox expression in zebrafish embryos causes edema and alters Ca2+ dynamics[J]. PeerJ, 2015, 3: e727.
[5] [5] ANDREW H, NING L, EVAVAN R, et al. MicroRNA control of muscle development and disease[J]. Current Opinion in Cell Biology, 2009, 21(3): 461-469.
[6] [6] CHEN X, HU Z, WANG W, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis[J]. International Journal of Cancer, 2011, 130(7): 1620-1628.
[7] [7] LIM L P, GLASNER M E, YEKTA S, et al. Vertebrate microRNA genes[J]. Science, 2003, 299(5612): 1540-1540.
[8] [8] GRIFFITHS-JONES S, GROCOCK R J, DONGEN S V, et al. miR-Base:microRNA sequences, targets and gene nomenclature[J]. Nucleic Acids Research, 2006, 34(1): D140-D144.
[9] [9] LEE R C, FEINBAUM R L, AMBROS V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[10] [10] WIGHTMAN B, HA I, RUVKUN G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans[J]. Cell, 1993, 75(5): 855-862.
[11] [11] MUY P, TANG S. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer[J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(20): 8893-8900.
[12] [12] ZHANG J, ZHENG F, YU G, et al. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells[J]. Biochemical and Biophysical Research Communications, 2013, 440(4): 582-588.
[13] [13] TRIPURANI S K, LEE K B, WEE G, et al. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis[J]. BMC Developmental Biology, 2011, 11(1): 25.
[14] [14] YEKTA S, SHIH I H, BARTEL D P. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science, 2004, 304(5670): 594-596.
[15] [15] SUN M, LIU X H, LI J H, et al. MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27kip1[J]. Molecular Cancer Therapeutics, 2012, 11(4): 842-852.
[16] [16] FENDERESKI M, ZIA M F, SHAFIEE M, et al. MicroRNA-196a as a potential diagnostic biomarker for esophageal squamous cell carcinoma[J]. Cancer Investigation, 2017, 35(2): 78-84.
[17] [17] QIU R, LIU Y, WU J Y, et al. Misexpression of miR-196a induces eye anomaly in Xenopus laevis[J]. Brain Research Bulletin, 2009, 79(1): 26-31.
[18] [18] GRISSA I, VERGNAUD G, POURCEL C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8(1): 172.
[19] [19] BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(8): 2551-2561.
[20] [20] MOJICA F J, DEZ-VILLASEOR C, GARCA-MARTNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182.
[21] [21] POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptakes of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653-663.
[22] [22] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[23] [23] GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451.
[24] [24] WOOD A J, LO T W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040): 307.
[25] [25] GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7): 397-405.
[26] [26] QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
Get Citation
Copy Citation Text
ZENG Ting, FU Guifang, XIE Binling, DU Han, XIE Huaping, YIN Yulong. The Establishment of the Zebrafish miR-196a-1 Knockout Lines[J]. Acta Laser Biology Sinica, 2020, 29(2): 176
Category:
Received: Dec. 28, 2019
Accepted: --
Published Online: Jan. 27, 2021
The Author Email: Huaping XIE (hpxie@hunnu.edu.cn)