Computer Engineering, Volume. 51, Issue 8, 120(2025)
Personalized Forgetting Modeling for Knowledge Tracing via Transformers
[2] [2] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[J]. Advances in Neural Information Processing Systems, 2015, 28: 505-513.
[3] [3] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[4] [4] PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing[EB/OL]. [2024-03-10]. https://arxiv.org/abs/06837.
[5] [5] LIU Q, HUANG Z Y, YIN Y, et al. EKT: exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(1): 100-115.
[6] [6] CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]//Proceedings of the 17th ACM Conference on Learning @ Scale. New York, USA: ACM Press, 2020: 341-344.
[7] [7] MURRAY R C, RITTER S, NIXON T, et al. Revealing the learning in learning curves[M]//LANE H C, YACEF K, MOSTOW J, et al. Artificial intelligence in education. Berlin, Germany: Springer, 2013: 473-482.
[8] [8] KYLLONEN P C, TIRRE W C. Individual differences in associative learning and forgetting[J]. Intelligence, 1988, 12(4): 393-421.
[10] [10] SHEN S H, LIU Q, CHEN E H, et al. Learning process-consistent knowledge tracing[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2021: 1452-1460.
[11] [11] SHIN D, SHIM Y, YU H, et al. SAINT+: integrating temporal features for EdNet correctness prediction[C]//Proceedings of the 11th International Learning Analytics and Knowledge Conference. New York, USA: ACM Press, 2021: 490-496.
[12] [12] CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-278.
[13] [13] KHAJAH M M, WING R, LINDSEY R V, et al. Integrating latent-factor and knowledge-tracing models to predict individual differences in learning[C]//Proceedings of the 17th International Conference on Educational Data Mining. Washington D.C., USA: IEEE Press, 2014: 99-106.
[14] [14] LEE J I, BRUNSKILL E. The impact on individualizing student models on necessary practice opportunities[EB/OL]. [2024-03-10]. https://cs.stanford.edu/people/ebrun/pdfs/lee2012impact.pdf.
[15] [15] EMBRETSON S E, REISE S P. Item response theory[M]. [S. l.]: Psychology Press, 2013.
[16] [16] BARTON M A, LORD F M. An upper asymptote for the three-parameter logistic item-response model[J]. ETS Research Report Series, 1981(1): 1-8.
[17] [17] CEN H, KOEDINGER K, JUNKER B. Comparing two IRT models for conjunctive skills[C]//Proceedings of the 9th International Conference on Intelligent Tutoring Systems. Montreal, Canada: [s. n.], 2008: 796-798.
[18] [18] VIE J J, KASHIMA H. Knowledge tracing machines: factorization machines for knowledge tracing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 750-757.
[19] [19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
[20] [20] YIN Y, DAI L, HUANG Z Y, et al. Tracing knowledge instead of patterns: stable knowledge tracing with diagnostic transformer[C]//Proceedings of the 2023 ACM Web Conference. New York, USA: ACM Press, 2023: 855-864.
[21] [21] NI Q, WEI T J, ZHAO J B, et al. HHSKT: a learner-question interactions based heterogeneous graph neural network model for knowledge tracing[J]. Expert Systems with Applications, 2023, 215: 119334.
[23] [23] GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 2330-2339.
[24] [24] RASCH G. Probabilistic models for some intelligence and attainment tests[M]. [S. l.]: MESA Press, 1993.
[25] [25] ZHOU Y H, LI X H, CAO Y B, et al. LANA: towards personalized deep knowledge tracing through distinguishable interactive sequences[EB/OL]. [2024-03-10]. https://arxiv.org/abs/2105.06266?context=cs.LG.
[26] [26] PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2020: 1205-1214.
[27] [27] SHEN S H, LIU Q, CHEN E H, et al. Convolutional knowledge tracing: modeling individualization in student learning process[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 1857-1860.
[28] [28] LONG T, QIN J R, SHEN J, et al. Improving knowledge tracing with collaborative information[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 599-607.
[29] [29] ZHAO W Z, XIA J, JIANG X P, et al. A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms[J]. Information Processing & Management, 2023, 60(1): 103114.
[30] [30] LIU T, ZHANG M, ZHU C, et al. Transformer-based convolutional forgetting knowledge tracking[J]. Scientific Reports, 2023, 13(1): 19112.
[31] [31] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3101-3107.
[32] [32] CHEN Y Y, LIU Q, HUANG Z Y, et al. Tracking knowledge proficiency of students with educational priors[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 989-998.
[33] [33] HUANG Z Y, LIU Q, CHEN Y Y, et al. Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students[J]. ACM Transactions on Information Systems, 2020, 38(2): 1-33.
[34] [34] ABDELRAHMAN G, WANG Q. Deep graph memory networks for forgetting-robust knowledge tracing[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(8): 1-13.
[35] [35] ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[EB/OL]. [2024-03-10]. https://arxiv.org/abs/1611.08108v2.
Get Citation
Copy Citation Text
ZHANG Zhaoli, LI Jiahao, LIU Hai, SHI Fobo, HE Jiawen. Personalized Forgetting Modeling for Knowledge Tracing via Transformers[J]. Computer Engineering, 2025, 51(8): 120
Category:
Received: Apr. 15, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: LIU Hai (hailiu0204@ccnu.edu.cn)