Chinese Journal of Lasers, Volume. 48, Issue 19, 1918002(2021)
Frequency Scanning Interferometry Absolute Distance Measurement
[1] Leick A, Rapoport L, Tatarnikov D. GPS satellite surveying[M](2015).
[2] Schmitt R H, Peterek M, Morse E et al. Advances in large-scale metrology-review and future trends[J]. CIRP Annals, 65, 643-665(2016).
[3] Fleming A J. A review of nanometer resolution position sensors:operation and performance[J]. Sensors and Actuators A: Physical, 190, 106-126(2013).
[4] Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light[J]. Applied Optics, 25, 2976-2980(1986).
[5] Thiel J, Pfeifer T, Hartmann M. Interferometric measurement of absolute distances of up to 40 m[J]. Measurement, 16, 1-6(1995).
[6] Stone J A, Stejskal A, Howard L. Absolute interferometry with a 670-nm external cavity diode laser[J]. Applied Optics, 38, 5981-5994(1999).
[7] Smith E D, Zvyagin A V, Sampson D D. Real-time dispersion compensation in scanning interferometry[J]. Optics Letters, 27, 1998-2000(2002).
[9] Deng Z W, Liu Z G, Li B et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping[J]. Optical Review, 22, 724-730(2015).
[10] Yang H J, Deibel J, Nyberg S et al. High-precision absolute distance and vibration measurement with frequency scanned interferometry[J]. Applied Optics, 44, 3937-3944(2005).
[11] Deng Z W, Liu Z G, Jia X Y et al. Dynamic cascade-model-based frequency-scanning interferometry for real-time and rapid absolute optical ranging[J]. Optics Express, 27, 21929-21945(2019).
[12] Pan H, Zhang F M, Shi C Z et al. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method[J]. Applied Optics, 56, 6956-6961(2017).
[13] Xu J X, Kong M, Xu X K. Laser frequency scanning interferometry based on estimating signal parameters via rotational invariance technique[J]. Acta Physica Sinica, 70, 034205(2021).
[14] Xu X K, Liu G D, Chen F D et al. Research on a kind of high precision and fast signal processing algorithm for FM/CW laser radar[J]. Proceedings of SPIE, 9297, 92970D(2014).
[15] Xu X K. Research on key technologies of laser frequency scanning interference absolute distance measurement[D](2016).
[16] Liu Z, Liu Z G, Deng Z W et al. Suppression of nonlinear frequency sweep in frequency sweeping interferometer based on order tracking technique[J]. Acta Optica Sinica, 36, 0112003(2016).
[21] Prellinger G, Meiners-Hagen K, Pollinger F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m[J]. Measurement Science and Technology, 26, 084003(2015).
[22] Prellinger G, Meiners-Hagen K, Pollinger F. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry[J]. Surface Topography: Metrology and Properties, 4, 024012(2016).
[23] Shi G, Zhang F M, Qu X H et al. Absolute distance measurement by high resolution frequency modulated continuous wavelaser[J]. Acta Physica Sinica, 63, 184209(2014).
[24] Zhao H, Liu B G, Liu G D et al. Nonlinearity correction and dispersion analysis in FMCW laser radar[J]. Proceedings of SPIE, 9297, 929729(2014).
[25] Jia L H, Wang Y, Wang X Y et al. Nonlinear calibration of frequency modulated continuous wave LIDAR based on a microresonator soliton comb[J]. Optics Letters, 46, 1025-1028(2021).
[26] Waden M S. Absolute distance metrology using frequency swept lasers[D](2011).
[27] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Optics Express, 16, 13139-13149(2008).
[28] Satyan N, Vasilyev A, Rakuljic G et al. Precise control of broadband frequency chirps using optoelectronic feedback[J]. Optics Express, 17, 15991-15999(2009).
[30] Roos P A, Reibel R R, Berg T et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 34, 3692-3694(2009).
[31] Barber Z W, Babbitt W R, Kaylor B et al. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar[J]. Applied Optics, 49, 213-219(2010).
[32] Barber Z W, Giorgetta F R, Roos P A et al. Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb[J]. Optics Letters, 36, 1152-1154(2011).
[33] Mateo A B, Barber Z W. Precision and accuracy testing of FMCW ladar-based length metrology[J]. Applied Optics, 54, 6019-6024(2015).
[34] Mateo A B, Barber Z W. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar[J]. Applied Optics, 54, 5911-5916(2015).
[35] Dilazaro T, Nehmetallah G. Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array[J]. Optics Express, 25, 2327-2340(2017).
[36] DiLazaro T, Nehmetallah G. Phase-noise model for actively linearized frequency-modulated continuous-wave ladar[J]. Applied Optics, 57, 6260-6268(2018).
[37] Swann W C, Gilbert S L. Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines[J]. Journal of the Optical Society of America B, 22, 1749-1756(2005).
[38] Slotwinski A. Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar: US7139446[P](2006).
[39] Shang Y, Lin J R, Yang L H et al. Compensation of sampling error in frequency scanning interferometry[J]. Proceedings of SPIE, 10621, 106210K(2018).
[40] Wojtkowski M, Srinivasan V J, Ko T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express, 12, 2404-2422(2004).
[41] Xu X K, Liu G D, Liu B G et al. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation[J]. Acta Physica Sinica, 64, 219501(2015).
[42] Xu X K, Liu G D, Liu B G et al. Research on the fiber dispersion and compensation in large-scale high-resolution broadband frequency-modulated continuous wave laser measurement system[J]. Optical Engineering, 54, 074102(2015).
[43] Liu G D, Xu X K, Liu B G et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement[J]. Optics Communications, 386, 57-64(2017).
[44] Lu C, Liu G D, Liu B G et al. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry[J]. Optics Express, 23, 31662-31671(2015).
[45] Pan H, Qu X H, Zhang F M. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance[J]. Optics Express, 26, 15186-15198(2018).
[46] Schneider R, Thuermel P, Stockmann M. Distance measurement of moving objects by frequency modulated laser radar[J]. Optical Engineering, 40, 33-37(2001).
[47] Coe P A, Howell D F, Nickerson R B. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment[J]. Measurement Science and Technology, 15, 2175-2187(2004).
[48] Martinez J J, Campbell M A, Warden M S et al. Dual-sweep frequency scanning interferometry using four wave mixing[J]. IEEE Photonics Technology Letters, 27, 733-736(2015).
[49] Hartmann L, Meiners-Hagen K, Abou-Zeid A. An absolute distance interferometer with two external cavity diode lasers[J]. Measurement Science and Technology, 19, 045307(2008).
[50] Pollinger F, Meiners-Hagen K, Wedde M et al. Diode-laser-based high-precision absolute distance interferometer of 20 m range[J]. Applied Optics, 48, 6188-6194(2009).
[51] Lu C, Liu G D, Liu B G et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration[J]. Optics Express, 24, 30215-30224(2016).
[52] Lu C, Xiang Y, Gan Y et al. FSI-based non-cooperative target absolute distance measurement method using PLL correction for the influence of a nonlinear clock[J]. Optics Letters, 43, 2098-2101(2018).
[53] Shang Y, Lin J R, Yang L H et al. Precision improvement in frequency scanning interferometry based on suppression of the magnification effect[J]. Optics Express, 28, 5822-5834(2020).
[55] Jia X Y, Liu Z G, Tao L et al. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements[J]. Optics Express, 25, 25782-25796(2017).
[56] Schodel R[M]. Modern interferometry for length metrology: exploring limits and novel techniques(2018).
[57] Rakich A, Dettmann L, Leveque S et al. A 3D metrology system for the GMT[J]. Proceedings of SPIE, 9906, 990614(2016).
[58] Rakich A, Schurter P, Conan R et al. Prototyping the GMT telescope metrology system on LBT[J]. Proceedings of SPIE, 10700, 107001S(2018).
[61] Hughes B, Warden M S. A novel coordinate measurement system based on frequency scanning interferometry[J]. The Journal of the CMSC, 8, 18-24(2013).
[62] Hughes B, Campbell M A, Lewis A J et al. Development of a high-accuracy multi-sensor, multi-target coordinate metrology system using frequency scanning interferometry and multilateration[J]. Proceedings of SPIE, 10332, 1033202(2017).
Get Citation
Copy Citation Text
Tengfei Wu, Qiang Zhou, Jiarui Lin, Linghui Yang, Jigui Zhu. Frequency Scanning Interferometry Absolute Distance Measurement[J]. Chinese Journal of Lasers, 2021, 48(19): 1918002
Received: Aug. 6, 2021
Accepted: Aug. 27, 2021
Published Online: Sep. 28, 2021
The Author Email: Zhu Jigui (jiguizhu@tju.edu.cn)