Chinese Journal of Lasers, Volume. 40, Issue 8, 802003(2013)
Propagation Characteristics of Simple Cylindrical Polarized Beam
[1] [1] X T Jia, B Li, Y Q Wang, et al.. Propagation properties of a cylindrically polarized vector beam[J]. Frontiers of Optoelectronics in China, 2009, 2(4): 414-418.
[2] [2] X T Jia, B Li, Y Q Wang. Far-field properties of a cylindrically polarized vector beam and its beam quality beyond the paraxial approximation[J]. Chin Opt Lett, 2010, 8(5): 517-519.
[3] [3] X T Jia, Y Q Wang. Vectorial structure of far field of cylindrically polarized beams diffracted at a circular aperture[J]. Opt Lett, 2011, 36(2): 295-297.
[5] [5] Huang Yan, Ye Hongan, Gao Laixu, et al.. New method of generating vectorial polarized beams[J]. Chinese J Lasers, 2012, 39(4): 0402004.
[6] [6] E Snitzer. Cylindrical dielectric waveguide modes[J]. J Opt Soc Am, 1961, 51(5): 491-498.
[7] [7] A W Snyder, W R Young. Modes of optical waveguide[J]. J Opt Soc Am, 1978, 68(3): 297-309.
[8] [8] R Oron, S Blit, N Davidson, et al.. The formation of laser beams with pure azimuthal or radial polarization[J]. Appl Phys Lett, 2000, 77(21): 3322-3324.
[9] [9] X T Jia, B Li, Y Q Wang. Analyses of a radially polarized vector beam in the source region[J]. J Mod Opt, 2010, 57(1): 51-57.
[10] [10] X T Jia, Y Q Wang, B Li. Nonparaxial analyses of radially polarized beams diffracted at a circular aperture[J]. Opt Express, 2010, 18(7): 7064-7075.
[11] [11] D M Deng. Nonparaxial propagation of radially polarized light beams[J]. J Opt Soc Am B, 2006, 23(6): 1228-1234.
[12] [12] J N Chen. Nonparaxial propagation of a radially polarized beam diffracted by an annular aperture[J] Chin Phys Lett, 2011, 28(12): 124202.
[13] [13] Cui Xiangxia, Chen Jun, Yang Zhaohua. Research progress on radially polarized beam[J]. Laser Journal, 2009, 30(2): 7-10.
[14] [14] Zhou Bingkun, Gao Yizhi, Chen Tirong, et al.. Principles of Lasers[M]. 4th edition. Beijing: National Defence Industry Press, 2000. 61-88.
[15] [15] S Saghafi, C J R Sheppard. Near field and far field of elegant Hermite-Gaussian and Laguerre-Gaussian modes[J]. J Mod Opt, 1998, 45(10): 1999-2009.
[16] [16] B D Lü, H Ma. Elegant Laguerre-Gaussian beams and their properties[J]. Laser Technology, 2001, 25(4): 312-316.
[17] [17] E Zauderer. Complex argument Hermite-Gaussian and Laguerre-Gaussian beams[J]. J Opt Soc Am A, 1986, 3(4): 465-469.
[18] [18] S Saghafi, C J R Sheppard. The beam propagation factor for higher order Gaussian beams[J]. Opt Commun, 1998, 153(4-6): 207-210.
[19] [19] Z R Mei, D M Zhao. The generalized beam propagation factor of truncated standard and elegant Laguerre-Gaussian beams[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(11): 1005-1011.
[20] [20] K Petermann. Constraints for fundamental-mode spot size for broadband dispersion compensated single-mode fibres[J]. Electron Lett, 1983, 19(18): 712-714.
[21] [21] Wu Chongqing. Optical Waveguide Theory[M]. 2nd edition. Beijing :Tsinghua University Press, 2005. 1-60.
[22] [22] W T Anderson, V Shah, L Curtis, et al.. Mode-field diameter measurements for single-mode fibers with non-Gaussian field profiles[J]. J Lightwave Technol, 1987, 5(2): 211-217.
[23] [23] Zou Linsen. Conformability of defining mode-field diameter by far-field scan and variable aperture with Petermann definition[J]. Study on Optical Communications, 1995, (2): 15-18.
[24] [24] P A Bélanger. Beam quality factor of the LP01 mode of the step-index fiber[J]. Opt Engng, 1993, 32(9): 2107-2109.
[25] [25] Ye Peida, Wu Yizun. Fundamental Theory of Optical Waveguide Technology[M]. Beijing: Posts & Telecom Press, 1981. 165-220.
[26] [26] A A Tovar. Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams[J]. J Opt Soc Am B, 1998, 15(10): 2705-2711.
[27] [27] A E Siegman. New developments in laser resonators[C]. SPIE, 1990, 1224: 2-14.
[28] [28] Lü Baida. Laser Optics: Beam Characterization, Propagation and Transform, Resonator Technology and Physics[M]. 3rd edition. Beijing: Higher Education Press, 2003. 89-105.
[29] [29] Q Zhan. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.
[30] [30] A E Siegman. Lasers[M]. Cafilornia: University Science Books, 1986. 626-662.
[31] [31] H Kogelnik, T Li. Laser beams and resonators[J]. Proc IEEE, 1966, 54(10): 1312-1329.
[32] [32] Li Xiaotong, Cen Zhaofeng. Geometrical Optics and Optical Design[M]. Hangzhou: Zhejiang University Press, 1997. 232.
[33] [33] J W Goodman.Introduction to Fourier Optics[M]. 2nd edition. New York: The McGraw-Hill Companies, Inc., 1996. 49-51.
[34] [34] M Born, E Wolf. Principles of Optics[M]. 7th edition. Oxford: Cambridge University Press, 2000. 512-516.
[35] [35] Guo Fuyuan, Li Lianhuang. Propagation characteristics of non-paraxial diffraction beam[J]. Chinese J Lasers, 2013, 40(1): 0102004.
[36] [36] Guo Fuyuan, Li Lianhuang. Comparison on the scalar diffraction integral formulae[J]. Acta Optica Sinica, 2013, 33(2): 0226001.
[38] [38] Wu Dazheng, Yang Linyao, Wang Songlin, et al.. Analysis of Signals and Linear Systems[M]. 4th edition. Beijing: Higher Education Press, 2010. 120-162.
[39] [39] K Petermann. Fundamental mode microbending loss in graded-index and W fibers[J]. Opt & Quant Electron, 1977, 9(2): 167-175.
[40] [40] F Y Guo, L H Li, H Zheng, et al.. Coupling characteristics between fundamental mode square waveguide and fiber[C]. SPIE, 2012, 8555: 85551H.
[42] [42] A E Siegman. How to (maybe) measure laser beam quality[J]. OSA TOPS, Diode Pumped Solid State Lasers: Applications and Issues, 1998, 17: 184-199.
Get Citation
Copy Citation Text
Guo Fuyuan, Li Lianhuang, Zheng Hua, Zhang Zhen, Lin Xiaoming. Propagation Characteristics of Simple Cylindrical Polarized Beam[J]. Chinese Journal of Lasers, 2013, 40(8): 802003
Category: Laser physics
Received: Jan. 21, 2013
Accepted: --
Published Online: Jul. 26, 2013
The Author Email: Fuyuan Guo (guofy@fjnu.edu.cn)