Infrared Technology, Volume. 44, Issue 5, 504(2022)
Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background
[1] [1] GAO Jinyan, GUO Yulan, LIN Zaiping, et al. Robust infrared small target detection using multiscale gray and variance difference measures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5039-5052.
[2] [2] XU Yongli, WANG Weihua. A method for single frame detection of infrared dim small target in complex background[J]. Journal of Physics. Conference Series, 2020, 1634(1): 012063.
[13] [13] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[14] [14] REN S, HE K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[15] [15] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[16] [16] LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[18] [18] Lowe D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[23] [23] ZHOU Junchi et al. Ship target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2021, 9(8): 908-908.
Get Citation
Copy Citation Text
DAI Jian, ZHAO Xu, LI Lianpeng, LIU Wen, CHU Xinyue. Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background[J]. Infrared Technology, 2022, 44(5): 504