Chinese Journal of Lasers, Volume. 47, Issue 10, 1003003(2020)
Preparation of Janus Zinc Foil and Its Bubble Transport Characteristic
[5] Gylys J, Zdankus T, Gylys M. Experimental investigation of heat transfer from inclined flat surface to aqueous foam[J]. International Journal of Heat and Mass Transfer, 69, 230-236(2014).
[6] De Temmerman L, Maere T, Temmink H et al. The effect of fine bubble aeration intensity on membrane bioreactor sludge characteristics and fouling[J]. Water Research, 76, 99-109(2015).
[7] Ju J, Bai H, Zheng Y M et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 3, 1247(2012).
[8] Zhao Y, Wang H X, Zhou H et al. Directional fluid transport in thin porous materials and its functional applications[J]. Small, 13, 1601070(2017).
[9] Yang H C, Xie Y S, Hou J W et al. Janus membranes: creating asymmetry for energy efficiency[J]. Advanced Materials, 30, 1801495(2018).
[10] Chen J W, Liu Y M, Guo D W et al. Under-water unidirectional air penetration via a Janus mesh[J]. Chemical Communications, 51, 11872-11875(2015).
[11] Yong J L, Chen F, Huo J L et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 10, 3688-3696(2017).
[12] Pei C T, Peng Y, Zhang Y et al. An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration[J]. ACS Nano, 12, 5489-5494(2018).
[13] Bodas D, Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment: an SEM investigation[J]. Sensors and Actuators B: Chemical, 123, 368-373(2007).
[14] da Silva B, Zhang M X, Schelcher G et al. Study of the stability and hydrophilicity of plasma-modified microfluidic materials[J]. Plasma Processes and Polymers, 14, 1600034(2017).
[15] Ngo C, Chun D. Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces[J]. Advanced Engineering Materials, 20, 1701086(2018).
[17] Liu C H, Zhu X J, Li X M et al. Wettability of nanosecond laser-induced titanium oxide alloys and coatings[J]. Laser & Optoelectronics Progress, 57, 011408(2019).
[23] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).
[24] Chen C, Shi L, Huang Z C et al. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport[J]. Advanced Materials Interfaces, 6, 1900297(2019).
[25] Takeda S, Fukawa M, Hayashi Y et al. Surface OH group governing adsorption properties of metal oxide films[J]. Thin Solid Films, 339, 220-224(1999).
[27] Ma X Y, Cao M Y, Teng C et al. Bio-inspired humidity responsive switch for directional water droplet delivery[J]. Journal of Materials Chemistry, 3, 15540-15545(2015).
[28] Zhang C H, Zhang B, Ma H Y et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 12, 2048-2055(2018).
Get Citation
Copy Citation Text
Xiao Yi, Meng Dong, Xu Chengyi, Zhang Ruihua, Yao Yansheng, Wu Sizhu, Yao Chengli. Preparation of Janus Zinc Foil and Its Bubble Transport Characteristic[J]. Chinese Journal of Lasers, 2020, 47(10): 1003003
Category: materials and thin films
Received: Apr. 3, 2020
Accepted: --
Published Online: Oct. 9, 2020
The Author Email: