Laser & Optoelectronics Progress, Volume. 57, Issue 20, 201018(2020)

Data Augmentation in SAR Images Based on Multi-Scale Generative Adversarial Networks

Shiyi Li1,2、*, Guangyuan Fu1, Zhongma Cui2, Xiaoting Yang2, Hongqiao Wang1, and Yukui Chen2
Author Affiliations
  • 1College of Operational Support, Rocket Force University of Engineering, Xi'an, Shannxi 710025, China
  • 2Beijing Institute of Remote Sensing Equipment, Beijing 100854, China
  • show less
    Figures & Tables(14)
    Structure of the pyramidal multi-scale GAN
    Structure of generator
    Inception block
    Linear convolutional layer and 1×1 convolutional layer. (a) Linear convolution layer; (b) 1×1 convolution layer
    Residual dense block
    Structure of the discriminator
    Image generated from single image. (a) Image1 of small ship; (b) image2 of small ship; (c) image with noise in background; (d) image of large ship
    Images generated by different networks. (a) Images used for training; (b) images generated by the original network; (c) images generated by the improved network
    Error detection of training on different data sets. (a) Correct test results; (b) SSDD data set; (c) SSDD data set + generated sample data set
    False alarms of training on different data sets. (a) Correct test results; (b) SSDD data set; (c) SSDD data set + generated sample data set
    Missed detection of training on different data sets. (a) Correct test results; (b) SSDD data set; (c) SSDD data set + generated sample data set
    Undetected result after adding the generated data set. (a) Correct test results; (b) SSDD data set; (c) SSDD data set + generated sample data set
    • Table 1. Parameters of the generator

      View table

      Table 1. Parameters of the generator

      BlockOperationConvolution kernelInput channelOutput channel
      HeadConv_block3×33192
      InceptionblockBlock 1Conv_block1×119264
      Block 2
      Conv_block1×119296
      Conv_block3×392128
      Block 3
      Conv_block1×119216
      Conv_block3×31632
      Conv_block3×33232
      Block 4
      Max Pooling
      Conv_block1×119232
      Connection partConv_block3×3256C
      Residual dense blockConv3×3CC
      Leaky ReLU
      Conv3×3256C
      Leaky ReLU
      Conv3×3384C
      Leaky ReLU
      Conv3×3512C
      Leaky ReLU
      Conv3×3640C
      Leaky ReLU
      tailConv_block3×3CC
      Conv_block3×3CC
      Conv3×3C3
      tanh
    • Table 2. AP of different methods to generate images

      View table

      Table 2. AP of different methods to generate images

      DatasetAP
      SSDTiny-YOLO
      SSDD0.80970.707
      SSDD_method1_200.72750.641
      SSDD+ SSDD_method1_200.81780.726
      SSDD+ SSDD_method1_400.81010.716
      SSDD+ SSDD_method2_200.81060.696
      SSDD+ SSDD_method2_400.79070.672
      SSDD+ SSDD_method2_11600.82130.702
    Tools

    Get Citation

    Copy Citation Text

    Shiyi Li, Guangyuan Fu, Zhongma Cui, Xiaoting Yang, Hongqiao Wang, Yukui Chen. Data Augmentation in SAR Images Based on Multi-Scale Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 13, 2020

    Accepted: Mar. 9, 2020

    Published Online: Oct. 13, 2020

    The Author Email: Shiyi Li (www.ryqlm@qq.com)

    DOI:10.3788/LOP57.201018

    Topics