Acta Photonica Sinica, Volume. 51, Issue 12, 1223001(2022)
Study on Photonic Nanojet of Bilayer Micropyramid Structure Coupled with Spatial Light Modulation
[1] ZHOU S, LI K, WANG Y. Tunable photonic nanojets from a micro-cylinder with a dielectric nano-layer[J]. Optik, 225, 165878(2020).
[2] LI X, CHEN Z et al. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets[J]. Optics Express, 13, 526-533(2005).
[3] CHEN Z, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 12, 1214-1220(2004).
[4] LIU Qian, SHEN Jianqi. Effect of resonant scattering on photonic jet of a microsphere[J]. Acta Photonica Sinica, 50, 0729002(2021).
[5] WANG Z B, WEI G, PENA A et al. Laser micro/nano fabrication in glass with tunable-focus particle lens array[J]. Optics Express, 16, 19706-19711(2008).
[6] KONG S C, ALLEN T, VADIM B. Quasi one-dimensional light beam generated by a graded-index microsphere[J]. Optics Express, 17, 3722-3731(2009).
[7] MATSUI T, OKAJIMA A. Finite-difference time-domain analysis of photonic nanojets from liquid-crystal-containing microcylinder[J]. Japanese Journal of Applied Physics, 53, 01AE04(2013).
[8] LIU C Y. Tunable photonic nanojet achieved using a core-shell microcylinder with nematic liquid crystal[J]. Journal of Modern Optics, 60, 538-543(2013).
[9] ETI N, GIDEN I H, HAYRAN Z et al. Manipulation of photonic nanojet using liquid crystals for elliptical and circular core-shell variations[J]. Journal of Modern Optics, 64, 1566-1577(2017).
[10] TATSUNOSUKE M, KAZUYA T. Direct imaging of tunable photonic nanojets from a self-assembled liquid crystal microdroplet[J]. Optics Letters, 42, 4663-4666(2017).
[11] DU B, XIA J, WU J et al. Switchable photonic nanojet by electro-switching nematic liquid crystals[J]. Nanomaterials, 9, 1-11(2019).
[12] VAHED A, KOUHI M. Temperature effects on liquid crystal-based tunable biosensors[J]. Optik, 242, 167383(2021).
[13] WANG Wei, LI Guohua, XUE Dong. A study of voltage-dependent electric-control birefringence of liquid crystal[J]. Acta Optica Sinica, 24, 970-972(2004).
[14] ZHOU Yuan, LI Runze, YU Xianghua et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators(invited)[J]. Acta Photonica Sinica, 50, 1123001(2021).
[15] LU Yanqing. Research progress of liquid crystal optics[J]. Optics & Optoelectronic Technology, 15, 9-12(2017).
[16] NIU Xiaoling, LIU Weiguo, XI Yingxue. Preparation of LB films of liquid crystal 5CB[J]. Journal of Xi'an Technological University, 30, 553-556(2010).
[17] GE S, LIU W, ZHANG J et al. Novel bilayer micropyramid structure photonic nanojet for enhancing a focused optical field[J]. Nanomaterials, 11, 2034(2021).
[18] WU P, LI J, WEI K et al. Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere[J]. Applied Physics Express, 8, 112001(2015).
[19] DARAFSHEH A, BOLLINGER D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders[J]. Optics Communications, 402, 270-275(2017).
[20] GU G, SONG J, LIANG H et al. Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets[J]. Scientific Reports, 7, 5635(2017).
[21] LI Qinghuan, CHEN Hengjie, CHENG Xinlu. Effect of spherical particles relative refractive index on the most peak value of scattered light field intensity[J]. Journal of Atomic and Molecular Physics, 24, 145-148(2007).
Get Citation
Copy Citation Text
Zehua SUN, Weiguo LIU, Shaobo GE, Bingcai LIU, Chunfang WU, Yingxue XI. Study on Photonic Nanojet of Bilayer Micropyramid Structure Coupled with Spatial Light Modulation[J]. Acta Photonica Sinica, 2022, 51(12): 1223001
Category: Optical Device
Received: May. 10, 2022
Accepted: Sep. 19, 2022
Published Online: Feb. 6, 2023
The Author Email: Weiguo LIU (wgliu@163.com)