Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0119001(2024)

Stimulated Phonon Polariton and Terahertz Physics (Invited)

Qiang Wu1,2、*, Yao Lu1,2, Ruobin Ma1,2, Xitan Xu1,2, Yibo Huang1,2, and Jingjun Xu1,2、**
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • 2Shenzhen Research Institute of Nankai University, Shenzhen 518083, Guangdong , China
  • show less
    References(56)

    [1] Born M, Huang K, Ge W K, Jia W Y[M]. Dynamical theory of crystal lattices, 81-102(2011).

    [2] Zhang G Y, Lan G X, Wang Y F[M]. Lattice vibration spectroscopy(2001).

    [3] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals[J]. Physical Review, 112, 1555-1567(1958).

    [4] Henry C H, Hopfield J J. Raman scattering by polaritons[J]. Physical Review Letters, 15, 964-966(1965).

    [5] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).

    [6] Koehl R M, Adachi S, Nelson K A. Direct visualization of collective wavepacket dynamics[J]. The Journal of Physical Chemistry A, 103, 10260-10267(1999).

    [7] Dougherty T P, Wiederrecht G P, Nelson K A et al. Femtosecond resolution of soft mode dynamics in structural phase transitions[J]. Science, 258, 770-774(1992).

    [8] Feurer T, Stoyanov N S, Ward D W et al. Terahertz polaritonics[J]. Annual Review of Materials Research, 37, 317-350(2007).

    [9] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [10] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).

    [11] Feurer T, Vaughan J C, Nelson K A. Spatiotemporal coherent control of lattice vibrational waves[J]. Science, 299, 374-377(2003).

    [12] Suizu K, Koketsu K, Shibuya T et al. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation[J]. Optics Express, 17, 6676-6681(2009).

    [13] Bodrov S B, Ilyakov I E, Shishkin B V et al. Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap[J]. Applied Physics Letters, 100, 201114(2012).

    [14] Lu Y, Zhang Q, Wu Q et al. Giant enhancement of THz-frequency optical nonlinearity by phonon polariton in ionic crystals[J]. Nature Communications, 12, 3183(2021).

    [15] Mashkovich E A, Grishunin K A, Dubrovin R M et al. Terahertz light-driven coupling of antiferromagnetic spins to lattice[J]. Science, 374, 1608-1611(2021).

    [16] Pein B C, Chang W D, Hwang H Y et al. Terahertz-driven luminescence and colossal stark effect in CdSe-CdS colloidal quantum dots[J]. Nano Letters, 17, 5375-5380(2017).

    [17] Li G, Medapalli R, Mentink J H et al. Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh[J]. Nature Communications, 13, 2998(2022).

    [18] Li X, Qiu T, Zhang J H et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2019).

    [19] Lu Y, Wu Q, Xiong H et al. Light-matter interaction beyond Born-Oppenheimer approximation mediated by stimulated phonon polaritons[J]. Communications Physics, 5, 299(2022).

    [20] Boyd R W[M]. Nonlinear optics(2009).

    [21] Yumoto G, Matsunaga R, Hibino H et al. Ultrafast terahertz nonlinear optics of landau level transitions in a monolayer graphene[J]. Physical Review Letters, 120, 107401(2018).

    [22] Zhang Y, Huang D, Shan Y W et al. Doping-induced second-harmonic generation in centrosymmetric graphene from quadrupole response[J]. Physical Review Letters, 122, 047401(2019).

    [23] Yin X B, Ye Z L, Chenet D A et al. Edge nonlinear optics on a MoS2 atomic monolayer[J]. Science, 344, 488-490(2014).

    [24] Seyler K L, Schaibley J R, Gong P et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor[J]. Nature Nanotechnology, 10, 407-411(2015).

    [25] Lin K Q, Bange S, Lupton J M. Quantum interference in second-harmonic generation from monolayer WSe2[J]. Nature Physics, 15, 242-246(2019).

    [26] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [27] Dougherty T P, Wiederrecht G P, Nelson K A et al. Femtosecond resolution of soft mode dynamics in structural phase transitions[J]. Science, 258, 770-774(1992).

    [28] Sun K L, Jiang H, Bykov D A et al. 1D quasi-bound states in the continuum with large operation bandwidth in the ω~k space for nonlinear optical applications[J]. Photonics Research, 10, 1575-1581(2022).

    [29] Yang K Y, Oh D Y, Lee S H et al. Bridging ultrahigh-Q devices and photonic circuits[J]. Nature Photonics, 12, 297-302(2018).

    [30] Vabishchevich P, Kivshar Y. Nonlinear photonics with metasurfaces[J]. Photonics Research, 11, B50-B64(2023).

    [31] Zhang X Y, Cao Q T, Wang Z et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 13, 21-24(2019).

    [32] Wang C L, Shi R, Gao L et al. Quenching of second-harmonic generation by epsilon-near-zero media[J]. Photonics Research, 11, 1437-1448(2023).

    [33] Lourés C R, Faccio D, Biancalana F. Nonlinear cavity and frequency comb radiations induced by negative frequency field effects[J]. Physical Review Letters, 115, 193904(2015).

    [34] Lu Y, Xiong H, Huang Y B et al. Nonlinear harmonic generation of terahertz waves in a topological valley polaritonic microcavity[J]. Chinese Optics Letters, 21, 081901(2023).

    [35] Huang K, Han R Q[M]. Solid state physics, 49-55(2014).

    [36] Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [37] Lin K H, Werley C A, Nelson K A. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts[J]. Applied Physics Letters, 95, 103304(2009).

    [38] Wu Q, Chen Q Q, Zhang B et al. Terahertz phonon polariton imaging[J]. Frontiers of Physics, 8, 217-227(2013).

    [39] Yang H M, Qi J W, Pan C P et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide[J]. Optics Express, 25, 14766-14773(2017).

    [40] Hebling J. Derivation of the pulse front tilt caused by angular dispersion[J]. Optical and Quantum Electronics, 28, 1759-1763(1996).

    [41] Carnio B N, Elezzabi A Y. Enhanced broadband terahertz radiation generation near the reststrahlen band in sub-wavelength leaky-mode LiNbO3 waveguides[J]. Optics Letters, 43, 1694-1697(2018).

    [42] Lu Y, Wu Q, Xiong H et al. Observation of “frozen-phase” propagation of THz pulses in a dispersive optical system[J]. Laser & Photonics Reviews, 15, 2000591(2021).

    [43] Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging[J]. Advances in Optics and Photonics, 10, 843-938(2018).

    [44] Wang D X, Xu K D, Luo S Y et al. A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics[J]. Nanoscale, 15, 3398-3407(2023).

    [45] Werley C A, Wu Q, Lin K H et al. Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3[J]. Journal of the Optical Society of America B, 27, 2350-2359(2010).

    [46] Xiong H, Wu Q, Lu Y et al. Polarization-resolved edge states in terahertz topological photonic crystal[J]. Optics Express, 27, 22819-22826(2019).

    [47] Xiong H, Lu Y, Wu Q et al. Topological valley transport of terahertz phonon-polaritons in a LiNbO3 chip[J]. ACS Photonics, 8, 2737-2745(2021).

    [48] Wang R D, Wu Q, Zhang Q et al. Conversion from terahertz-guided waves to surface waves with metasurface[J]. Optics Express, 26, 31233-31243(2018).

    [49] Zhang B, Wu Q, Pan C P et al. THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide[J]. Optics Express, 23, 16042-16051(2015).

    [50] Wang R D, Wu Q, Zhang Y Q et al. Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures[J]. Applied Physics Letters, 114, 121102(2019).

    [51] Wang R D, Wu Q, Cai W et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface[J]. ACS Photonics, 6, 1774-1779(2019).

    [52] Zhang Q, Qi J W, Wu Q et al. Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure[J]. Scientific Reports, 7, 17602(2017).

    [53] Pan C P, Wu Q, Zhang Q et al. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors[J]. Optics Express, 25, 9768-9777(2017).

    [54] Zhao W J, Qi J W, Lu Y et al. On-chip plasmon-induced transparency in THz metamaterial on a LiNbO3 subwavelength planar waveguide[J]. Optics Express, 27, 7373-7383(2019).

    [55] Zhang Q, Qi J W, Lu Y et al. Cavity-cavity coupling based on a terahertz rectangular subwavelength waveguide[J]. Journal of Applied Physics, 126, 063103(2019).

    [56] de Oliveira T V A G, Nörenberg T, Álvarez-Pérez G et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal[J]. Advanced Materials, 33, 2005777(2021).

    Tools

    Get Citation

    Copy Citation Text

    Qiang Wu, Yao Lu, Ruobin Ma, Xitan Xu, Yibo Huang, Jingjun Xu. Stimulated Phonon Polariton and Terahertz Physics (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0119001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Nov. 13, 2023

    Accepted: Dec. 15, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Qiang Wu (wuqiang@nankai.edu.cn), Jingjun Xu (jjxu@nankai.edu.cn)

    DOI:10.3788/LOP232493

    CSTR:32186.14.LOP232493

    Topics