Chinese Journal of Lasers, Volume. 43, Issue 7, 702006(2016)

Experimental Research on Improving Fatigue Strength of Wounded TC4 Titanium Alloy by Laser Shock Peening

Li Donglin1、*, He Weifeng1, You Xi1, Zhang Jin2, Luo Sihai1, Yang Zhufang1, and Nie Xiangfan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(23)

    [1] [1] Marandi S M, Rahmani K, Tajdari M. Foreign object damage on the leading edge of gas turbine blades[J]. Aerospace Science and Technology, 2014, 33(1): 65-75.

    [2] [2] Orchowski N J, Mohammed R D, Clark G, et al.. The post-repair performance of Ti-6Al-4V after foreign object damage[J]. Procedia Engineering, 2011, 10: 3622-3627.

    [3] [3] Zabeen S, Preuss M, Withers P J. Residual stresses caused by head-on and 45° foreign object damage for a laser shock peened Ti-6Al-4V alloy aerofoil[J]. Materials Science and Engineering A, 2013, 560: 518-527.

    [4] [4] Witek L. Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue[J]. Engineering Failure Analysis, 2011, 18(4): 1223-1232.

    [5] [5] Mishra R K, Srivastav D K, Srinivasan K, et al.. Impact of foreign object damage on an aero gas turbine engine[J]. Journal of Failure Analysis & Prevention, 2015, 15(1): 25-32.

    [6] [6] Frankel P G, Withers P J, Preuss M, et al.. Residual stress fields after FOD impact on flat and aerofoil-shaped leading edges[J]. Mechanics of Materials, 2012, 55: 130-145.

    [7] [7] Zhang X, Chan B, Lama S, et al.. Influence of impact dents on the fatigue strength of aluminium alloy friction stir welds[J]. Procedia Engineering, 2010, 2(1): 1691-1700.

    [8] [8] Duo P, Liu J, Dini D, et al.. Evaluation and analysis of residual stresses due to foreign object damage[J]. Mechanics of Materials, 2007, 39(3): 199-211.

    [9] [9] Zhou Z, Gill A S, Telang A, et al.. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy[J]. Experimental Mechanics, 2014, 54(9): 1597-1611.

    [10] [10] Tian Qing, Zhou Jianzhong, Huang Shu, et al.. Relaxation of residual stress on laser-peened surface during cyclic loading[J]. Laser & Optoelectronics Progress, 2014, 51(8): 081403.

    [11] [11] Lin B, Lupton C, Spanrad S, et al.. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue, 2014, 59: 23-33.

    [12] [12] Spanrad S, Tong J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J]. Materials Science and Engineering A, 2011, 528(4-5): 2128-2136.

    [13] [13] Zabeen S, Preuss M, Withers P J. Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth[J]. Acta Materialia, 2015, 83: 216-226.

    [14] [14] Maxwell D C, Nicholas T. A rapid method for generation of a Haigh diagram for high cycle fatigue[M]// Fatigue and fracture mechanics. West Conshohocken: ASTM International, 1999, 29: 626-641.

    [15] [15] Liu Lijun. Analysis on fatigue influencing factors and notch effect of high strength bolt used in grid structure with bolt-sphere joints[D]. Taiyuan: Taiyuan University of Technology, 2003.

    [16] [16] Nicholas T, Thompson S R, Porter W J, et al.. Comparison of fatigue limit strength of Ti-6Al-4V in tension and torsion after real and simulated foreign object damage[J]. International Journal of Fatigue, 2005, 27(10-12): 1637-1643.

    [17] [17] Ruschau J, Thompson S R, Nicholas T. High cycle fatigue limit stresses for airfoils subjected to foreign object damage[J]. International Journal of Fatigue, 2003, 25(9-11): 955-962.

    [18] [18] Lanning D B, Nicholas T, Haritos G K. On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V[J]. International Journal of Fatigue, 2005, 27(1): 45-47.

    [19] [19] Lin B, Zabeen S, Tong J, et al.. Residual stresses due to foreign object damage in laser-shock peened aerofoils: Simulation and measurement[J]. Mechanics of Materials, 2015, 82: 78-90.

    [21] [21] Liu Wencai, Dong Jie, Zhai Chunquan, et al.. Influence of shot peening on high cycle fatigue properties of high-strength wrought magnesium alloy ZK60-T5[J]. Journal of Zhengzhou University (Engineering Science), 2009, 30(1): 1-5.

    [22] [22] Wang X M, Shi J. Validation of Johnson-Cook plasticity and damage model using impact experiment[J]. International Journal of Impact Engineering, 2013, 60: 67-75.

    [23] [23] Brockman R A, Braisted W R, Olson S E, et al.. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 2012, 36(1): 96-108.

    CLP Journals

    [1] Huang Shuai, Zhu Ying, Guo Wei2, Peng Peng2, Diao Xungang. Effect of Laser Peening on Fatigue Strength of TC17 Titanium Alloys[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111406

    Tools

    Get Citation

    Copy Citation Text

    Li Donglin, He Weifeng, You Xi, Zhang Jin, Luo Sihai, Yang Zhufang, Nie Xiangfan. Experimental Research on Improving Fatigue Strength of Wounded TC4 Titanium Alloy by Laser Shock Peening[J]. Chinese Journal of Lasers, 2016, 43(7): 702006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 8, 2016

    Accepted: --

    Published Online: Jul. 13, 2016

    The Author Email: Donglin Li (1534643268@qq.com)

    DOI:10.3788/cjl201643.0702006

    Topics