Molecular Plant, Volume. 18, Issue 8, 1330(2025)
The plant-specific protein IQD22 interacts with calcium sensors to activate anaerobic respiration during hypoxia in Arabidopsis
[1] [1] Abel, S., Brstenbinder, K., and Mller, J.(2013). The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal. Behav.8:e24369. https://doi.org/10.4161/psb.24369.
[2] [2] Antnio, C., Ppke, C., Rocha, M., Diab, H., Limami, A.M., Obata, T., Fernie, A.R., and van Dongen, J.T.(2016). Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol.170:43-56. https://doi.org/10.1104/pp.15.00266.
[3] [3] Bailey-Serres, J., and Voesenek, L.A.C.J.(2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol.59:313-339. https://doi.org/10.1146/annurev.arplant.59.032607.092752.
[4] [4] Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J.(2002). RopGAP4-dependent Rop GTPase rheostat control ofArabidopsisoxygen deprivation tolerance. Science296:2026-2028. https://doi.org/10.1126/science.1071505.
[5] [5] Bouch, N., Yellin, A., Snedden, W.A., and Fromm, H.(2005). Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol.56:435-466. https://doi.org/10.1146/annurev.arplant.56.032604.144224.
[6] [6] Bui, L.T., Novi, G., Lombardi, L., Iannuzzi, C., Rossi, J., Santaniello, A., Mensuali, A., Corbineau, F., Giuntoli, B., Perata, P., et al.(2019). Conservation of ethanol fermentation and its regulation in land plants. J. Exp. Bot.70:1815-1827. https://doi.org/10.1093/jxb/erz052.
[7] [7] Cai, R., Zhang, C., Zhao, Y., Zhu, K., Wang, Y., Jiang, H., Xiang, Y., and Cheng, B.(2016). Genome-wide analysis of the IQD gene family in maize. Mol. Genet. Genom.291:543-558. https://doi.org/10.1007/s00438-015-1122-7.
[8] [8] Cho, H.Y., Loreti, E., Shih, M.C., and Perata, P.(2021). Energy and sugar signaling during hypoxia. New Phytol.229:57-63. https://doi.org/10.1111/nph.16326.
[9] [9] Chung, H.J., and Ferl, R.J.(1999).Arabidopsisalcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol.121:429-436. https://doi.org/10.1104/pp.121.2.429.
[10] [10] Clapham, D.E.(2007). Calcium signaling. Cell131:1047-1058. https://doi.org/10.1016/j.cell.2007.11.028.
[11] [11] Clough, S.J., and Bent, A.F.(1998). Floral dip: a simplified method for agrobacterium-mediated transformation ofArabidopsisthaliana. Plant J.16:735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x.
[12] [12] Dong, Q., Wallrad, L., Almutairi, B.O., and Kudla, J.(2022). Ca2+ signaling in plant responses to abiotic stresses. J. Integr. Plant Biol.64:287-300. https://doi.org/10.1111/jipb.13228.
[13] [13] Ellis, M.H., Dennis, E.S., and Peacock, W.J.(1999).Arabidopsisroots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol.119:57-64. https://doi.org/10.1104/pp.119.1.57.
[14] [14] Fan, B., Liao, K., Wang, L.N., Shi, L.L., Zhang, Y., Xu, L.J., Zhou, Y., Li, J.F., Chen, Y.Q., Chen, Q.F., and Xiao, S.(2023). Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Mol. Plant16:979-998. https://doi.org/10.1016/j.molp.2023.04.002.
[15] [15] Fernie, A.R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A.J., Saito, K., Fraser, P.D., and DeLuca, V.(2011). Recommendations for reporting metabolite data. Plant Cell23:2477-2482. https://doi.org/10.1105/tpc.111.086272.
[16] [16] Fukuda, R., Zhang, H., Kim, J.W., Shimoda, L., Dang, C.V., and Semenza, G.L.(2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell129:111-122. https://doi.org/10.1016/j.cell.2007.01.047.
[17] [17] Gao, H., Jia, Y., Guo, S., Lv, G., Wang, T., and Juan, L.(2011). Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. J. Plant Physiol.168:1217-1225. https://doi.org/10.1016/j.jplph.2011.01.022.
[18] [18] Gasch, P., Fundinger, M., Mller, J.T., Lee, T., Bailey-Serres, J., and Mustroph, A.(2016). Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression inArabidopsis. Plant Cell28:160-180. https://doi.org/10.1105/tpc.15.00866.
[19] [19] Gibbs, D.J., and Holdsworth, M.J.(2020). Every breath you take: new insights into plant and animal oxygen sensing. Cell180:22-24. https://doi.org/10.1016/j.cell.2019.10.043.
[20] [20] Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., and Holdsworth, M.J.(2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature479:415-418. https://doi.org/10.1038/nature10534.
[21] [21] Hess, N., Klode, M., Anders, M., and Sauter, M.(2011). The hypoxia responsive transcription factor genesERF71/HRE2andERF73/HRE1ofArabidopsisare differentially regulated by ethylene. Physiol. Plantarum143:41-49. https://doi.org/10.1111/j.1399-3054.2011.01486.x.
[22] [22] Hoeflich, K.P., and Ikura, M.(2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell108:739-742. https://doi.org/10.1016/s0092-8674(02)00682-7.
[23] [23] Hsu, F.C., Chou, M.Y., Chou, S.J., Li, Y.R., Peng, H.P., and Shih, M.C.(2013). Submergence confers immunity mediated by the WRKY22 transcription factor inArabidopsis. Plant Cell25:2699-2713. https://doi.org/10.1105/tpc.113.114447.
[24] [24] Ismond, K.P., Dolferus, R., de Pauw, M., Dennis, E.S., and Good, A.G.(2003). Enhanced low oxygen survival inArabidopsisthrough increased metabolic flux in the fermentative pathway. Plant Physiol.132:1292-1302. https://doi.org/10.1104/pp.103.022244.
[25] [25] Jardine, K.J., and McDowell, N.(2023). Fermentation-mediated growth, signaling, and defense in plants. New Phytol.239:839-851. https://doi.org/10.1111/nph.19015.
[26] [26] Kunkowska, A.B., Fontana, F., Betti, F., Soeur, R., Beckers, G.J.M., Meyer, C., De Jaeger, G., Weits, D.A., Loreti, E., and Perata, P.(2023). Target of rapamycin signaling couples energy to oxygen sensing to modulate hypoxic gene expression inArabidopsis. Proc. Natl. Acad. Sci. USA120:e2212474120. https://doi.org/10.1073/pnas.2212474120.
[27] [27] Lee, K.W., Chen, P.W., and Yu, S.M.(2014). Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. Plant Cell Environ.37:2234-2244. https://doi.org/10.1111/pce.12311.
[28] [28] Lehmann, J., Jrgensen, M.E., Fratz, S., Mller, H.M., Kusch, J., Scherzer, S., Navarro-Retamal, C., Mayer, D., Bhm, J., Konrad, K.R., et al.(2021). Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response ofArabidopsis. Curr. Biol.31:3575-3585.e9. https://doi.org/10.1016/j.cub.2021.06.018.
[29] [29] Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A.C.J., Perata, P., and van Dongen, J.T.(2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature479:419-422. https://doi.org/10.1038/nature10536.
[30] [30] Liu, Z., Haider, M.S., Khan, N., and Fang, J.(2020). Comprehensive sequence analysis ofIQDgene family and their expression profiling in Grapevine (Vitis vinifera). Genes11:235. https://doi.org/10.3390/genes11020235.
[31] [31] Lokdarshi, A., Conner, W.C., McClintock, C., Li, T., and Roberts, D.M.(2016).Arabidopsis CML38, a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress. Plant Physiol.170:1046-1059. https://doi.org/10.1104/pp.15.01407.
[32] [32] Loreti, E., van Veen, H., and Perata, P.(2016). Plant responses to flooding stress. Curr. Opin. Plant Biol.33:64-71. https://doi.org/10.1016/j.pbi.2016.06.005.
[33] [33] Luan, S., and Wang, C.(2021). Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol.37:311-340. https://doi.org/10.1146/annurev-cellbio-120219-035210.
[34] [34] Mazumder, M., Kumar, S., Kumar, D., Bhattacharya, A., and Gourinath, S.(2023). Machine learning-based modulation of Ca2+-binding affinity in EF-hand proteins and comparative structural insights into site-specific cooperative binding. Int. J. Biol. Macromol.248:125866. https://doi.org/10.1016/j.ijbiomac.
[35] [35] Narsai, R., Rocha, M., Geigenberger, P., Whelan, J., and van Dongen, J.T.(2011). Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol.190:472-487. https://doi.org/10.1111/j.1469-8137.2010.03589.x.
[36] [36] Oizel, K., Gratas, C., Nadaradjane, A., Oliver, L., Vallette, F.M., and Pecqueur, C.(2015). D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide-triggered apoptosis mediated by an alteration in mitochondrial NADH. Cell Death Dis.6:e1704. https://doi.org/10.1038/cddis.2015.13.
[37] [37] Papdi, C., Prez-Salam, I., Joseph, M.P., Giuntoli, B., Bgre, L., Koncz, C., and Szabados, L.(2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genesRAP2.12, RAP2.2andRAP2.3. Plant J.82:772-784. https://doi.org/10.1111/tpj.12848.
[38] [38] Paul, M.V., Iyer, S., Amerhauser, C., Lehmann, M., van Dongen, J.T., and Geigenberger, P.(2016). Oxygen sensing via the tthylene response transcription factor RAP2.12 affects plant metabolism and performance under both normoxia and hypoxia. Plant Physiol.172:141-153. https://doi.org/10.1104/pp.16.00460.
[39] [39] Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al.(2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res.47:d442-d450. https://doi.org/10.1093/nar/gky1106.
[40] [40] Qi, H., Wang, Y., Bao, Y., Bassham, D.C., Chen, L., Chen, Q.F., Hou, S., Hwang, I., Huang, L., Lai, Z., et al.(2023). Studying plant autophagy: challenges and recommended methodologies. Adv. Biotech.1:2. https://doi.org/10.1007/s44307-023-00002-8.
[41] [41] Reddy, V.S., Ali, G.S., and Reddy, A.S.N.(2002). Genes encoding calmodulin-binding proteins in theArabidopsisgenome. J. Biol. Chem.277:9840-9852. https://doi.org/10.1074/jbc.M111626200.
[42] [42] Reynoso, M.A., Kajala, K., Bajic, M., West, D.A., Pauluzzi, G., Yao, A.I., Hatch, K., Zumstein, K., Woodhouse, M., Rodriguez-Medina, J., et al.(2019). Evolutionary flexibility in flooding response circuitry in angiosperms. Science365:1291-1295. https://doi.org/10.1126/science.aax8862.
[43] [43] Rocha, M., Licausi, F., Arajo, W.L., Nunes-Nesi, A., Sodek, L., Fernie, A.R., and van Dongen, J.T.(2010). Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging ofLotus japonicus. Plant Physiol.152:1501-1513. https://doi.org/10.1104/pp.109.150045.
[44] [44] Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G., and Estelle, M.(1997). Reduced naphthylphthalamic acid binding in thetir3mutant ofArabidopsisis associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell9:745-757. https://doi.org/10.1105/tpc.9.5.745.
[45] [45] Sachs, M.M., Freeling, M., and Okimoto, R.(1980). The anaerobic proteins of maize. Cell20:761-767. https://doi.org/10.1016/0092-8674(80)90322-0.
[46] [46] Schmidt, R.R., Fulda, M., Paul, M.V., Anders, M., Plum, F., Weits, D.A., Kosmacz, M., Larson, T.R., Graham, I.A., Beemster, G.T.S., et al.(2018). Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA inArabidopsis. Proc. Natl. Acad. Sci. USA115: e12101-e12110. https://doi.org/10.1073/pnas.1809429115.
[47] [47] Sedbrook, J.C., Kronebusch, P.J., Borisy, G.G., Trewavas, A.J., and Masson, P.H.(1996). Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia andArabidopsisthaliana seedlings. Plant Physiol.111:243-257. https://doi.org/10.1104/pp.111.1.243.
[48] [48] Song, Y., Liu, L., Wei, Y., Li, G., Yue, X., and An, L.(2016). Metabolite profiling ofadh1mutant response to cold stress inArabidopsis. Front. Plant Sci.7:2072. https://doi.org/10.3389/fpls.2016.02072.
[49] [49] Srikanth, S., Jung, H.J., Kim, K.D., Souda, P., Whitelegge, J., and Gwack, Y.(2010). A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat. Cell Biol.12:436-446. https://doi.org/10.1038/ncb2045.
[50] [50] Steinhorst, L., and Kudla, J.(2014). Signaling in cells and organisms - calcium holds the line. Curr. Opin. Plant Biol.22:14-21. https://doi.org/10.1016/j.pbi.2014.08.003.
[51] [51] Subbaiah, C.C., Bush, D.S., and Sachs, M.M.(1994a). Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell6:1747-1762. https://doi.org/10.1105/tpc.6.12.1747.
[52] [52] Subbaiah, C.C., Zhang, J., and Sachs, M.M.(1994b). Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol.105:369-376. https://doi.org/10.1104/pp.105.1.369.
[53] [53] Thompson, C.B.(2016). Into thin air: how we sense and respond to hypoxia. Cell167:9-11. https://doi.org/10.1016/j.cell.2016.08.036.
[54] [54] Tsai, K.J., Suen, D.F., and Shih, M.C.(2023). Hypoxia response protein HRM1 modulates the activity of mitochondrial electron transport chain inArabidopsisunder hypoxic stress. New Phytol.239:1315-1331. https://doi.org/10.1111/nph.19006.
[55] [55] van Dongen, J.T., Frhlich, A., Ramrez-Aguilar, S.J., Schauer, N., Fernie, A.R., Erban, A., Kopka, J., Clark, J., Langer, A., and Geigenberger, P.(2009). Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots ofArabidopsisplants. Ann. Bot.103:269-280. https://doi.org/10.1093/aob/mcn126.
[56] [56] Varshavsky, A.(2019). N-degron and C-degron pathways of protein degradation. Proc. Natl. Acad. Sci. USA116:358-366. https://doi.org/10.1073/pnas.1816596116.
[57] [57] Voesenek, L.A.C.J., and Bailey-Serres, J.(2015). Flood adaptive traits and processes: an overview. New Phytol.206:57-73. https://doi.org/10.1111/nph.13209.
[58] [58] Wagner, S., Steinbeck, J., Fuchs, P., Lichtenauer, S., Elssser, M., Schippers, J.H.M., Nietzel, T., Ruberti, C., Van Aken, O., Meyer, A.J., et al.(2019). Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytol.224:1668-1684. https://doi.org/10.1111/nph.16093.
[59] [59] Wang, F., Chen, Z.H., Liu, X., Colmer, T.D., Shabala, L., Salih, A., Zhou, M., and Shabala, S.(2017). Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia inArabidopsis. J. Exp. Bot.68:3191-3204. https://doi.org/10.1093/jxb/erw378.
[60] [60] Wang, L.N., Wang, W.C., Liao, K., Xu, L.J., Xie, D.X., Xie, R.H., and Xiao, S.(2025). Survival mechanisms of plants under hypoxic stress: Physiological acclimation and molecular regulation. J. Integr. Plant Biol.67:440-454. https://doi.org/10.1111/jipb.13880.
[61] [61] Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J.T., and Licausi, F.(2014). Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun.5:3425. https://doi.org/10.1038/ncomms4425.
[62] [62] White, M.D., Dalle Carbonare, L., Lavilla Puerta, M., Iacopino, S., Edwards, M., Dunne, K., Pires, E., Levy, C., McDonough, M.A., Licausi, F., and Flashman, E.(2020). Structures ofArabidopsisthaliana oxygen-sensing plant cysteine oxidases 4 and 5 enable targeted manipulation of their activity. Proc. Natl. Acad. Sci. USA117:23140-23147. https://doi.org/10.1073/pnas.2000206117.
[63] [63] White, M.D., Klecker, M., Hopkinson, R.J., Weits, D.A., Mueller, C., Naumann, C., O'Neill, R., Wickens, J., Yang, J., Brooks-Bartlett, J.C., et al.(2017). Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun.8:14690. https://doi.org/10.1038/ncomms14690.
[64] [64] Wu, Q., Su, N., Huang, X., Cui, J., Shabala, L., Zhou, M., Yu, M., and Shabala, S.(2021). Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis. Plant Commun.2:100188. https://doi.org/10.1016/j.xplc.2021.100188.
[65] [65] Wu, S., Xiao, H., Cabrera, A., Meulia, T., and van der Knaap, E.(2011).SUNregulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol.157:1175-1186. https://doi.org/10.1104/pp.111.181065.
[66] [66] Xia, F.N., Zeng, B., Liu, H.S., Qi, H., Xie, L.J., Yu, L.J., Chen, Q.F., Li, J.F., Chen, Y.Q., Jiang, L., and Xiao, S.(2020). SINAT E3 ubiquitin ligases mediate FREE1 and VPS23A degradation to modulate abscisic acid signaling. Plant Cell32:3290-3310. https://doi.org/10.1105/tpc.20.00267.
[67] [67] Xiao, S., and Chye, M.L.(2011). Overexpression ofArabidopsisACBP3 enhances NPR1-dependent plant resistance toPseudomonas syringepvtomatoDC3000. Plant Physiol.156:2069-2081. https://doi.org/10.1104/pp.111.176933.
[68] [68] Xie, L.J., Zhou, Y., Chen, Q.F., and Xiao, S.(2021). New insights into the role of lipids in plant hypoxia responses. Prog. Lipid Res.81:101072. https://doi.org/10.1016/j.plipres.2020.101072.
[69] [69] Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J.(2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature442:705-708. https://doi.org/10.1038/nature04920.
[70] [70] Yang, N.C., Ho, W.M., Chen, Y.H., and Hu, M.L.(2002). A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Anal. Biochem.306:323-327. https://doi.org/10.1006/abio.2002.5698.
[71] [71] Yip Delormel, T., and Boudsocq, M.(2019). Properties and functions of calcium dependent protein kinases and their relatives inArabidopsisthaliana. New Phytol.224:585-604. https://doi.org/10.1111/nph.16088.
[72] [72] Yoo, S.D., Cho, Y.H., and Sheen, J.(2007).Arabidopsismesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc.2:1565-1572. https://doi.org/10.1038/nprot.2007.199.
[73] [73] Yu, W.W., Chen, Q.F., Liao, K., Zhou, D.M., Yang, Y.C., He, M., Yu, L.J., Guo, D.Y., Xiao, S., Xie, R.H., and Zhou, Y.(2024). The calcium-dependent protein kinase CPK16 regulates hypoxia-induced ROS production by phosphorylating the NADPH oxidase RBOHD inArabidopsis. Plant Cell36:3451-3466. https://doi.org/10.1093/plcell/koae153.
[74] [74] Yuan, J., Liu, T., Yu, Z., Li, Y., Ren, H., Hou, X., and Li, Y.(2019). Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance. Plant Mol. Biol.99:603-620. https://doi.org/10.1007/s11103-019-00839-5.
[75] [75] Yuan, L.B., Chen, M.X., Wang, L.N., Sasidharan, R., Voesenek, L.A.C.J., and Xiao, S.(2023). Multi-stress resilience in plants recovering from submergence. Plant Biotechnol. J.21:466-481. https://doi.org/10.1111/pbi.13944.
[76] [76] Yuan, L.B., Chen, L., Zhai, N., Zhou, Y., Zhao, S.S., Shi, L.L., Xiao, S., Yu, L.J., and Xie, L.J.(2020). The anaerobic product ethanol promotes autophagy-dependent submergence tolerance inArabidopsis. Int. J. Mol. Sci.21:7361. https://doi.org/10.3390/ijms21197361.
[77] [77] Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., et al.(2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing inArabidopsis. Nature514:367-371. https://doi.org/10.1038/nature13593.
[78] [78] Yuan, P., Jauregui, E., Du, L., Tanaka, K., and Poovaiah, B.W.(2017). Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr. Opin. Plant Biol.38:173-183. https://doi.org/10.1016/j.pbi.2017.06.003.
[79] [79] Zabalza, A., van Dongen, J.T., Froehlich, A., Oliver, S.N., Faix, B., Gupta, K.J., Schmlzlin, E., Igal, M., Orcaray, L., Royuela, M., and Geigenberger, P.(2009). Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol.149:1087-1098.
[80] [80] Zachut, M., Shapiro, F., and Silanikove, N.(2016). Detecting ethanol and acetaldehyde by simple and ultrasensitive fluorimetric methods in compound foods. Food Chem.201:270-274. https://doi.org/10.1016/j.foodchem.2016.01.079.
[81] [81] Zhang, D., and Licausi, F.(2023). Underwater survival: Calcium signaling keeps plants afloat. Mol. Plant16:971-972. https://doi.org/10.1016/j.molp.2023.05.004.
[82] [82] Zhang, S., Yu, R., Yu, D., Chang, P., Guo, S., Yang, X., Liu, X., Xu, C., and Hu, Y.(2022). The calcium signaling module CaM-IQM destabilizes IAA-ARF interaction to regulate callus and lateral root formation. Proc. Natl. Acad. Sci. USA119:e2202669119. https://doi.org/10.1073/pnas.2202669119.
[83] [83] Zhou, Y., Tan, W.J., Xie, L.J., Qi, H., Yang, Y.C., Huang, L.P., Lai, Y.X., Tan, Y.F., Zhou, D.M., Yu, L.J., et al.(2020). Polyunsaturated linolenoyl-CoA modulates ERF-VII-mediated hypoxia signaling inArabidopsis. J. Integr. Plant Biol.62:330-348. https://doi.org/10.1111/jipb.12875.
[84] [84] Zhou, Y., Zhou, D.M., Yu, W.W., Shi, L.L., Zhang, Y., Lai, Y.X., Huang, L.P., Qi, H., Chen, Q.F., Yao, N., et al.(2022). Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling inArabidopsis. Plant Cell34:889-909. https://doi.org/10.1093/plcell/koab289.
[85] [85] Zipfel, C., and Oldroyd, G.E.D.(2017). Plant signalling in symbiosis and immunity. Nature543:328-336. https://doi.org/10.1038/nature22009.
Get Citation
Copy Citation Text
Zhao Shanshan, Chen Qin-Fang, Chen Li, Zhou Ying, Liao Ke, Wang Fengzhu, Zhang Xue, Chen Moxian, Xie Ruo-Han, Xiao Shi. The plant-specific protein IQD22 interacts with calcium sensors to activate anaerobic respiration during hypoxia in Arabidopsis[J]. Molecular Plant, 2025, 18(8): 1330
Category:
Received: Dec. 10, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: