Journal of Synthetic Crystals, Volume. 54, Issue 5, 793(2025)
Growth and Luminescence Properties of Li2MoO4 Crystal by Bridgman Method
[1] EMANÚEL' N M, GUMANOV L L, KONOVALOVA N P et al. Experimental determination of the antileukemic effect of 1, 2-bis-diazoacetylethane. Doklady Akademii Nauk SSSR, 183, 724-726(1968).
[2] VERGADOS J D, EJIRI H, SIMKOVIC F. Theory of neutrinoless double-beta decay. Reports on Progress in Physics Physical Society, 75, 106301(2012).
[3] COLLABORATION C U O R E. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE. Nature, 604, 53-58(2022).
[4] KANG S K, KIM C S. Majorana neutrino masses and neutrino oscillations. Physical Review D, 63, 113010(2001).
[5] BARABASH A S, CHERNYAK D M, DANEVICH F A et al. Enriched Zn100MoO4 scintillating bolometers to search for 0ν2β decay of 100Mo with the LUMINEU experiment. The European Physical Journal C, 74, 3133(2014).
[6] CAMPANI ON BEHALF OF THE CUORE COLLABORATION A. New results on 0νββ decay from the CUORE experiment. Letters in High Energy Physics, 2240014(2024).
[7] AZZOLINI O, BEEMAN J W, BELLINI F et al. Search for majoron-like particles with CUPID-0. Physical Review D, 107(2023).
[8] ARMENGAUD E, AUGIER C, BARABASH A S et al. New limit for neutrinoless double-beta decay of {100} Mo from the CUPID-Mo experiment. Physical Review Letters, 126, 181802(2021).
[9] ZHANG X, LIN J, MIKHAILIK V B et al. Studies of scintillation properties of CaMoO4 at millikelvin temperatures. Applied Physics Letters, 106, 241904(2015).
[10] BARINOVA O P, DANEVICH F A, DEGODA V Y et al. First test of Li2MoO4 crystal as a cryogenic scintillating bolometer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 613, 54-57(2010).
[11] BEKKER T B, CORON N, DANEVICH F A et al. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo. Astroparticle Physics, 72, 38-45(2016).
[12] VELÁZQUEZ M, VEBER P, MOUTATOUIA M et al. Exploratory growth in the Li2MoO4-MoO3 system for the next crystal generation of heat-scintillation cryogenic bolometers. Solid State Sciences, 65, 41-51(2017).
[13] SON J K, CHOE J S, GILEVA O et al. Growth and development of pure Li2MoO4 crystals for rare event experiment at CUP. Journal of Instrumentation, 15(2020).
[14] CHENG J P, KANG K J, LI J M et al. The China Jinping underground laboratory and its early science. Annual Review of Nuclear and Particle Science, 67, 231-251(2017).
[15] CHEN X, CHEN P, JIANG L W et al. Luminescence properties of large-size Li2MoO4 single crystal grown by Czochralski method. Journal of Crystal Growth, 558, 126022(2021).
[16] CHEN P, JIANG L W, CHEN Y P et al. Bridgman growth and luminescence properties of Li2MoO4 single crystal. Materials Letters, 215, 225-228(2018).
[17] BEEMAN J W, BELLINI F, CAPELLI S et al. ZnMoO4: a promising bolometer for neutrinoless double beta decay searches. Astroparticle Physics, 35, 813-820(2012).
[18] GRIGORIEVA V D, SHLEGEL V N, BOROVLEV Y A et al. Li2100deplMoO4 crystals grown by low-thermal-gradient Czochralski technique. Journal of Crystal Growth, 552, 125913(2020).
[19] GILEVA O, ARYAL P, KARKI S et al. Investigation of the molybdenum oxide purification for the AMoRE experiment. Journal of Radioanalytical and Nuclear Chemistry, 314, 1695-1700(2017).
[20] SPASSKY D A, NAGIRNYI V, SAVON A E et al. Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li2MoO4. Journal of Luminescence, 166, 195-202(2015).
[21] ARMENGAUD E, ARNAUD Q, AUGIER C et al. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers. Journal of Physics: Conference Series, 718(2016).
[22] ARMATOL A, ARMENGAUD E, ARMSTRONG W et al. Characterization of cubic Li2100MoO4 crystals for the CUPID experiment. The European Physical Journal C, 81, 104(2021).
[23] LIU T Y, CHEN J, YAN F N. Optical polarized properties related to the oxygen vacancy in the CaMoO4 crystal. Journal of Luminescence, 129, 101-104(2009).
[24] ITOH M. Luminescence study of self-trapped excitons in CdMoO4. Journal of Luminescence, 132, 645-651(2012).
[25] SPASSKY D A, VASIL’EV A N, KAMENSKIKH I A et al. Electronic structure and luminescence mechanisms in ZnMoO4 crystals. Journal of Physics Condensed Matter, 23, 365501(2011).
[26] PANDEY I R, KIM H J, KIM Y D. Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches. Journal of Crystal Growth, 480, 62-66(2017).
[27] MYKHAYLYK V B, KRAUS H, SALIBA M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Materials Horizons, 6, 1740-1747(2019).
[28] AHMED N, KRAUS H, KIM H J et al. Characterisation of tungstate and molybdate crystals ABO4 (A=Ca, Sr, Zn, Cd; B=W, Mo) for luminescence lifetime cryothermometry. Materialia, 4, 287-296(2018).
[29] BABIN V, BOHACEK P, BENDER E et al. Decay kinetics of the green emission in tungstates and molybdates. Radiation Measurements, 38, 533-537(2004).
[30] MIKHAILIK V, KRAUS H, HENRY S et al. Scintillation studies of CaWO4 in the millikelvin temperature range. Physical Review B, 75, 184308(2007).
Get Citation
Copy Citation Text
Wenyu LIU, Lu QIAN, Fangjian LI, Shangke PAN, Zhigang SUN, Hongbing CHEN, Jianguo PAN. Growth and Luminescence Properties of Li2MoO4 Crystal by Bridgman Method[J]. Journal of Synthetic Crystals, 2025, 54(5): 793
Category:
Received: Nov. 1, 2024
Accepted: --
Published Online: Jul. 2, 2025
The Author Email: Shangke PAN (panshangke@nbu.edu.cn)