Acta Laser Biology Sinica, Volume. 31, Issue 3, 202(2022)

Research Progress on the Mechanism of Bacteria-plants Joint Governance of Heavy Metal Pollution

ZHOU Lin, LIANG Yi, ZHAO Changsong, YU Rong, GONG Tingbin, and SU Chunli*
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] BUHARI T R, ISMAIL A. Pollution status of heavy metals in surface sediments collected from west coast of peninsular malaysia[J]. Open Access Library Journal, 2020, 7(10): 1-19.

    [3] [3] NOURBAKHSH M, SAG? Y, ?ZER D, et al. A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters[J]. Process Biochemistry, 1994, 29(1): 1-5.

    [5] [5] BRAHMI M, ACHOUR N, HASSEN A. Identification and characterization of heavy mental-resistant bacteria selected from different polluted sources[J]. Desalination and Water Treatment, 2014, 52(37-39): 7037-7052.

    [6] [6] LUCIO V, LILIANA I, ADRIANA F. Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria[J]. Applied Soil Ecology, 2018, 132: 1-10.

    [7] [7] JEONG S, MOON H S, NAM K, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil[J]. Chemosphere, 2012, 88(2): 204-210.

    [8] [8] LLIMóS M, BISTUé M, MARCELINO J, et al. A native Zn-solubilising bacterium from mine soil promotes plant growth and facilitates phytoremediation[J]. Journal of Soils and Sediments, 2021, 21(6): 2301-2314.

    [10] [10] HERRERA-QUITERIO A, TOLEDO-HERNáNDEZ E, AGUIRRE-NOYOLA J L, et al. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico[J]. Revista Argentina de Microbiologia, 2020, 52(3): 231-239.

    [11] [11] ISLAM M R, SULTANA T, JOE M M, et al. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper[J]. Journal of Basic Microbiology, 2013, 53(12): 1004-1015.

    [12] [12] DHALI S, PRADHAN M, SAHOO R K, et al. Alleviating Cr (VI) stress in horse gram (Macrotyloma uniflorum Var. Madhu) by native Cr-tolerant nodule endophytes isolated from contaminated site of Sukinda[J]. Environmental Science and Pollution Research International, 2021, 28(24): 31717-31730.

    [13] [13] AS A, MN A, MA A, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: a review[J]. Applied Soil Ecology, 2019, 133: 146-159.

    [14] [14] ETESAMI H, EMAMI S, ALIKHANI H A. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects a review[J]. Journal of Soil Science & Plant Nutrition, 2017, 17(4): 897-911.

    [15] [15] WU S C, CHEUNG K C, LUO Y M, et al. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea[J]. Environ Pollut, 2006, 140(1): 124-135.

    [17] [17] SUBRAHMANYAM G, SHARMA R K, KUMAR G N, et al. Vigna radiata var. GM4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium Enterobacter sp. C1D in Cr (VI)-amended soils[J]. Pedosphere, 2018, 28(1): 144-156.

    [18] [18] SINGH N, MARWA N, MISHRA S K, et al. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L[J]. Ecotoxicology and Environmental Safety, 2016, 125: 25-34.

    [20] [20] DAHLHEIMER S R, NEAL C R, FEIN J B. Potential mobilization of platinum-group elements by siderophores in surface environments[J]. Environmental Science & Technology, 2007, 41(3): 870-875.

    [21] [21] DIMKPA C O, SVATO? A, DABROWSKA P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp[J]. Chemosphere, 2008, 74(1): 19-25.

    [22] [22] DOURADO M N, MARTINS P F, QUECINE M C, et al. Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato[J]. Annals of Applied Biology, 2013, 163(3): 494-507.

    [23] [23] DIMKPA C O, MERTEN D, SVATO? A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biology and Biochemistry, 2008, 41(1): 154-162.

    [25] [25] GROBELAK A, KOKOT P, ?WI?TEK J, et al. Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals[J]. Journal of Ecological Engineering, 2018, 19(5): 150-157.

    [26] [26] BELIMOV A A, HONTZEAS N, SAFRONOVA V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)[J]. Soil Biology and Biochemistry, 2004, 37(2): 241-250.

    [27] [27] BRíGIDO C, NASCIMENTO F X, DUAN J, et al. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea[J]. FEMS Microbiology Letters, 2013, 349(1): 46-53.

    [28] [28] OREMLAND R S, STOLZ J F. Arsenic, microbes and contaminated aquifers[J]. Trends in Microbiology, 2005, 13(2): 45-49.

    [29] [29] ABOU-SHANAB R, MATHAI P P, SANTELLI C, et al. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species[J]. Ecotoxicology and Environmental Safety, 2020, 195: 1-11.

    [30] [30] SINGH P, PATIL Y, RALE V. Biosurfactant production: emerging trends and promising strategies[J]. Journal of Applied Microbiology, 2019, 126(1): 2-13.

    [31] [31] JUWARKAR A A, NAIR A, DUBEY K V, et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils[J]. Chemosphere, 2007, 68(10): 1996-2002.

    [32] [32] SHENG X F, HE L Y, WANG Q Y, et al. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil[J]. Journal of Hazardous Materials, 2008, 155(1/2): 17-22.

    [33] [33] CHEN L, LUO S L, LI X J, et al. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake[J]. Soil Biology and Biochemistry, 2014(68): 300-308.

    [36] [36] WU Y J, MA L Y, LIU Q Z, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395: 1-11.

    [37] [37] PAN F S, LUO S, SHEN J, et al. The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure[J]. Environmental Science and Pollution Research, 2017, 24(10): 9350-9360.

    CLP Journals

    [1] LIU Hui, LI Xiaochao, MAO Xiaoqian, LU Binghua, ZENG Guihua, LI Hualin, WANG Xuejing, CHEN Jiayan, XIAO Yamei, LI Zhuang, LIU Wenbin, YANG Liping. A Novel Function of Galactomyces candidum in Highly Efficient Ammonia Nitrogen Removal from Low C/N Wastewater[J]. Acta Laser Biology Sinica, 2023, 32(1): 89

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Lin, LIANG Yi, ZHAO Changsong, YU Rong, GONG Tingbin, SU Chunli. Research Progress on the Mechanism of Bacteria-plants Joint Governance of Heavy Metal Pollution[J]. Acta Laser Biology Sinica, 2022, 31(3): 202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 22, 2022

    Accepted: --

    Published Online: Jul. 25, 2022

    The Author Email: Chunli SU (22094917@qq.com)

    DOI:10.3969/j.issn.1007-7146.2022.03.002

    Topics