Laser & Optoelectronics Progress, Volume. 57, Issue 14, 141003(2020)

Object Detection Method Based on Improved YOLO Lightweight Network

Chengyue Li1,2, Jianmin Yao1,2,3、*, Zhixian Lin1,2, Qun Yan1,2, and Baoqing Fan1,2
Author Affiliations
  • 1Flat Panel Display National and Local Joint Engineering Laboratory, National University Science Park Sunshine Technology Building, Fuzhou University, Fuzhou, Fujian 350116, China
  • 2College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
  • 3Jinjiang Bosen Electronic Technology Co., Ltd., Quanzhou, Fujian 362200, China
  • show less
    Figures & Tables(16)
    YOLOv3 network structure
    Structural unit of YOLOv3. (a) Convolutional unit; (b) ResNet unit; (c) Convolutional Set unit
    Improved backbone network
    Improved dense network module
    Improved spatial pyramid pooling network module
    DS-YOLO network structure. (a) Network structure; (b) DC-SPP unit; (c) Conv-Residual unit
    YOLOv3tiny test results
    DS-YOLO test results
    YOLOv3 test results
    • Table 1. Comparison of Base-YOLO and YOLOv3

      View table

      Table 1. Comparison of Base-YOLO and YOLOv3

      MethodWeight /MBBFLOPSmAP /%Speed /(frame/s)
      Base-YOLO17.27.865.9150
      YOLOv323665.8678.330
    • Table 2. Comparison of D-YOLO and Base-YOLO

      View table

      Table 2. Comparison of D-YOLO and Base-YOLO

      MethodWeight /MBBFLOPSmAP /%Speed /(frame/s)
      Base-YOLO17.27.865.9150
      D-YOLO24.68.5467.7143
    • Table 3. Comparison of S-YOLO and Base-YOLO

      View table

      Table 3. Comparison of S-YOLO and Base-YOLO

      MethodWeight /MBBFLOPSmAP /%Speed /(frame/s)
      Base-YOLO17.27.865.9150
      S-YOLO17.57.9267.1147
    • Table 4. Comparison of DS-YOLO and YOLO%

      View table

      Table 4. Comparison of DS-YOLO and YOLO%

      MethodAPmAP
      AeroBikeBirdBoatBottleBusCarCatChairCowTableDogHorseMbikePersonPlantSheepSofaTrainTv
      YOLO-v3tiny65.37043.84724.968.974.765.733.453.7496175.372.169.126.95950.97560.857.3
      DS-YOLO78.378.960.662.85176.385.576.749.470.866.171.38079.980.936.966.866.281.76869.4
      YOLO-v384.58577.268.865.485.286.386.362.379.974.885.787.486.281.150.880.277.482.775.678.1
    • Table 5. Comparison of DS-YOLO and others algorithms in VOC2007, 2012

      View table

      Table 5. Comparison of DS-YOLO and others algorithms in VOC2007, 2012

      Method (size)YearBase networkmAP /%Speed /(frame/s)
      Faster RCNN2015VGG1673.27
      SSD(300)SSD(300)SSDLite(300)DSSD(321)STDN(300)20162017201720172018VGG16MobileNetv2MobileNetResNet-101DenseNet-16974.377.472.778.678.14650569.541.5
      YOLOv2(416)YOLOv3tiny(416)YOLOv3(416)201720182018Darknet19-Darknet5376.857.178.36716830
      DS-YOLO2019-69.4141
    • Table 6. Comparison of DS-YOLO and YOLO

      View table

      Table 6. Comparison of DS-YOLO and YOLO

      MethodWeight /MBBFLOPS
      YOLOv3tinyYOLOv3342365.5765.86
      DS-YOLO258.58
    • Table 7. Comparison of DS-YOLO and YOLO、SSD in COCO

      View table

      Table 7. Comparison of DS-YOLO and YOLO、SSD in COCO

      MethodAP, IoUAP, Area
      0.5∶0.950.50.75SML
      YOLOv3tinySSD14.423.233.141.216.323.43.25.318.523.230.239.6
      DS-YOLOYOLOv320.431.140.355.318.135.24.814.221.334.134.746.4
    Tools

    Get Citation

    Copy Citation Text

    Chengyue Li, Jianmin Yao, Zhixian Lin, Qun Yan, Baoqing Fan. Object Detection Method Based on Improved YOLO Lightweight Network[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 19, 2019

    Accepted: Nov. 26, 2019

    Published Online: Jul. 23, 2020

    The Author Email: Jianmin Yao (25593793@qq.com)

    DOI:10.3788/LOP57.141003

    Topics