Chinese Journal of Lasers, Volume. 51, Issue 19, 1901003(2024)
Beam Combining of High Power Fiber Lasers: Progress, Trend and Prospects (Invited)
[1] Liu S H. Current situation of laser development[J]. Physics Bulletin, 156-160(1966).
[2] Zhou P[M]. Coherent beam combination technology of fiber lasers(2015).
[13] Zhou P, He B. Preface to the column “fiber laser beam synthesis”[J]. Infrared and Laser Engineering, 47, 11(2018).
[14] Li X Y, Zhou P. Special issue on laser beam combining technology[J]. High Power Laser and Particle Beams, 35, 041000(2023).
[18] Guo L H, Jiang Q W, Wu H L et al. High-brightness blue semiconductor laser source based on grating spectral beam combining[J]. Chinese Journal of Lasers, 51, 1301007(2024).
[25] Zhou P, Su R T, Ma Y X et al. Coherent beam combining of fiber lasers by actively phase control[J]. Acta Optica Sinica, 43, 1700001(2023).
[30] Kawahito Y, Wang H Z, Katayama S et al. Ultra high power (100 kW) fiber laser welding of steel[J]. Optics Letters, 43, 4667-4670(2018).
[37] Zhou P, Xu J M, Jiang M et al. Advanced methods for typical parameter measurements of high-power lasers[J]. National Defense Technology, 44, 9-19(2023).
[41] Jiang Z F, Lu Y, Liu W G et al. All-fiber spatial mode excitation and adaptive control based on photonic lanterns[J]. Acta Optica Sinica, 43, 1700002(2023).
[43] Afzal R S, Honea E, Savage-Leuchs M et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[J]. Proceedings of SPIE, 8547, 854706(2012).
[48] Schmidt O, Andersen T V, Limpert J et al. 187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers[J]. Optics Letters, 34, 226-228(2009).
[49] Schmidt O, Wirth C, Tsybin I et al. Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources[J]. Optics Letters, 34, 1567-1569(2009).
[50] Li Z, Li J Z, Zhang K et al. Spectrally-combined nanosecond pulsed fiber laser with an average power of 360 W[J]. Laser & Infrared, 51, 1610-1613(2021).
[56] Sun R F, Zhang K, Zhang L M et al. 9.6 kW combined light source using dichroic-mirror-based spectral beam combining[J]. High Power Laser and Particle Beams, 35, 121004(2023).
[57] Xi X M, Yang B L, Wang P et al. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors[J]. Acta Physica Sinica, 72, 184203(2023).
[58] Wang P, Xi X M, Meng X M et al. Active control of spectral synthesis tilt jitter to realize 8 kW near single mode output[J]. Chinese Journal of Lasers, 50, 2116001(2023).
[59] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm∶fiber laser[J]. Proceedings of SPIE, 7580, 758012(2010).
[60] Ren C Y, Shen Y Q, Zheng Y Q et al. Widely-tunable all-fiber Tm doped MOPA with >1 kW of output power[J]. Optics Express, 31, 22733-22739(2023).
[62] Liu H, Wang H Y, Wang J W et al. 2 μm ultra-narrow linewidth fiber laser achieves 1 kW near-diffraction-limited output[J]. High Power Laser and Particle Beams, 36, 071001(2024).
[64] Jiang M, Ma P F, Zhou P et al. Spectral beam combining of fiber laser with wavelength separation broader than 60 nm[J]. Laser Physics, 26, 115104(2016).
[66] Fan C C, Fu M, Hao X L et al. All-fiber Raman oscillator with 1.8 kW output power[J]. Infrared and Laser Engineering, 53, 20240031(2024).
[67] Fan C C, Fu M, Yao T F et al. The output power of all-fiber Raman amplifier exceeds 4 kW[J]. Chinese Journal of Lasers, 51, 0616001(2024).
[69] Želudevičius J, Rutkauskas R, Regelskis K. Coherent beam combining of pulsed fiber amplifiers by noncolinear sum-frequency generation[J]. Optics Letters, 44, 1813-1816(2019).
[75] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).
[76] Bi G Y, Liu B W, Yu C M et al. Coherent beam combining-based high-power green femtosecond laser system[J]. Chinese Journal of Lasers, 52, 0201003(2025).
[80] Hanna M, Guichard F, Zaouter Y et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B: Atomic Molecular Physics, 49, 062004(2016).
[82] Wang J S, Zhang Y, Wang J L et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 70, 034206(2021).
[83] Liu B D, Huang Z M, Zhang F et al. Recent progress of temporal coherent combination of chirped pulses in fiber lasers[J]. High Power Laser and Particle Beams, 35, 111001(2023).
[87] Stark H, Müller M, Kienel M et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 25, 13494-13503(2017).
[89] Zhang Z G. Coherent pulse stacking: an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 54, 120001(2017).
[91] Pei H Z, Ruppe J, Chen S Y et al. 10 mJ energy extraction from Yb-doped 85 µm core CCC fiber using coherent pulse stacking amplification of fs pulses[C], AW4A.4(2017).
[95] Huang Z M, Geng D X, Liu B D et al. Short pulse time domain coherent beam combining based on Gires-Tournois interference cavity[J]. Chinese Journal of Lasers, 51, 0716003(2024).
[96] Su R T, Zhou P, Zhang P F et al. Review on the progress in coherent beam combining of ultra-short fiber lasers (Invited)[J]. Infrared and Laser Engineering, 47, 0103001(2018).
[98] Wu Y F, Yang B W, Song Y R et al. Coherent combining 64 femtosecond pulses into mJ by delay line stacking of a fiber laser[C], ATh3A.4(2023).
[99] Xie G H, Luo D P, Tang Z Q et al. 132 W 132 μJ femtosecond pulses from a coherently combined system of two rod-type photonic crystal fibers[J]. Photonics, 10, 1138(2023).
[100] Wang T, Li C, Liu Y et al. Coherent polarization beam combination of two ultrafast laser channels based on fiber stretcher phase locking[J]. Infrared and Laser Engineering, 52, 20220869(2023).
[102] Zhang J Y, Ren B, Li C et al. Efficient coherent polarization synthesis of eight-channel ultrafast fiber laser[J]. Chinese Journal of Lasers, 51, 1516001(2024).
[104] Taylor L R, Feng Y, Calia D B. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8555(2010).
[105] Lombard L, Valla M, Planchat C et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics Letters, 40, 1030-1033(2015).
[107] Bi M Z, Su Y W, Ma W Z et al. Space laser communication system based on fiber laser phased array[J]. Journal of Applied Optics, 37, 938-941(2016).
[108] Geng C, Li F, Zuo J et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 45, 1906-1909(2020).
[111] Shu B W, Zhang Y Q, Chang H X et al. Integrated coherent beam combining system for orbital-angular-momentum shift-keying-based free-space optical links[J]. Advanced Photonics Nexus, 3, 036003(2024).
[114] Geisler D J, Yarnall T M, Schieler C M et al. Experimental demonstration of multi-aperture digital coherent combining over a 3.2-km free-space link[J]. Proceedings of SPIE, 10096, 100960C(2017).
[121] Liu S X, Liu H, Qi X P et al. Coherent beam combining of cylindrical vector beams for power scaling[J]. Optics Letters, 48, 5121-5124(2023).
[126] Wagner J, Leis A, Armon N et al. Coherent beam combining-unlimited flexibility in laser material processing: an analysis of the effects of CBC on the laser welding process[J]. PhotonicsViews, 19, 60-63(2022).
[131] Wu H S, Jiang M, Zhou P. Artificial intelligence-assisted laser science and technology: status, opportunities, and challenges[J]. Chinese Journal of Lasers, 50, 1101001(2023).
[132] Chang Q, Hou T Y, Long J H et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 40, 6542-6547(2022).
[134] Shaykin A, Kostyukov I, Sergeev A et al. Prospects of PEARL 10 and XCELS laser facilities[J]. The Review of Laser Engineering, 42, 141-144(2014).
[137] Soulard R, Quinn M N, Mourou G. Design and properties of a coherent amplifying network laser[J]. Applied Optics, 54, 4640-4645(2015).
[143] Geng C, Yang Y, Li F et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 45, 170692(2018).
[145] Liu Z J, Zhou P, Ma P F et al. Coherent polarization combination of four fiber amplifiers with high power and narrow line width to achieve 5 kW high brightness laser output[J]. Chinese Journal of Lasers, 44, 0415004(2017).
[146] Mueller M, Klenke A, Stark H et al. 16 channel coherently-combined ultrafast fiber laser[C], AW4A.3(2017).
[147] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).
[155] Fang S B, Wei Z Y. Sub-optical-cycle coherent waveform synthesis[J]. Acta Optica Sinica, 39, 0126006(2019).
[156] Rossi G M, Mainz R E, Yang Y D et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nature Photonics, 14, 629-635(2020).
[159] Zhou P, Chang H X, Su R T et al. Research history and prospects of coherent beam combining of fiber lasers: from perspective of citations (Invited)[J]. Chinese Journal of Lasers, 51, 0121002(2024).
[160] Hao X L, Li Y, Fan C C et al. LD cladding pumped Raman fiber laser achieves kilowatt output for the first time[J]. Chinese Journal of Lasers, 49, 2416004(2022).
[161] Zhang Z H, Wei F, Wu H M et al. Coherent beam combining baser source based on an injection‑locked DFB laser array using planar lightwave circuit technology[J]. Chinese Journal of Lasers, 50, 1901009(2023).
[162] Wang K, Cai J, Ding Y et al. Study on polarization beam combining experimental of mid-infrared quantum cascade laser[J]. Infrared and Laser Engineering, 51, 20210679(2022).
[163] Zhang M, Wang X, Yang S H et al. High-efficiency fiber combining of long-wave infrared quantum cascade lasers[J]. Acta Optica Sinica, 44, 0814003(2024).
[164] Zhang Z H, Wei F, Wu H M et al. Coherent beam combining laser source based on an injection-locked DFB laser array using planar lightwave circuit technology[J]. Chinese Journal of Lasers, 50, 1901009(2023).
[165] Dong Y J, Liu J, Zhao X R et al. Coherent beam combining of 976 nm diode laser based on photonic lantern[J]. Laser & Optoelectronics Progress, 61, 0514006(2024).
[166] Zhang C, Lin X C, Zhao P F et al. Coherent beam combining technology for diode lasers (Invited)[J]. Laser & Optoelectronics Progress, 61, 0114007(2024).
[168] Yang H Z, Li X Y, Jiang W H. Comparison of several stochastic parallel optimization control algorithms for adaptive optics system[J]. High Power Laser and Particle Beams, 20, 11-16(2008).
[172] Wu J, Ma Y X, Ma P F et al. Fiber laser coherent synthesis 20 kW high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).
[175] Huang L J, Lü H B, Zhou P et al. Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm[J]. IEEE Photonics Technology Letters, 27, 2280-2283(2015).
[176] Chen F, Zhao S B, Wang Q et al. Modal decomposition of a fibre laser beam based on the push-broom stochastic parallel gradient descent algorithm[J]. Optics Communications, 481, 126538(2021).
[179] Wu J L, Hu C W, Liu R H et al. Adam SPGD algorithm in freeform surface in-process interferometry[J]. Optics Express, 30, 32528-32539(2022).
[182] Ren S, Lai W C, Wang G J et al. Experimental study on the impact of signal bandwidth on the transverse mode instability threshold of fiber amplifiers[J]. Optics Express, 30, 7845-7853(2022).
[184] Wang Y S, Peng W J, Wang J et al. 10 GHz narrow line wide line polarized near-single-mode all-fiber laser achieves 5 kW power output[J]. Chinese Journal of Lasers, 50, 2416002(2023).
[185] Zhou P, Ma P F, Ren S et al. High-power narrow linewidth fiber laser: progress and prospect[J]. Information Countermeasure Technology, 2, 16-36(2023).
[186] Jin Y X, Han Y X, Cao H C et al. Intertwined development of near-infrared high-power lasers and reflective holographic surface-relief diffraction gratings[J]. Chinese Journal of Lasers, 51, 1101028(2024).
[191] Xiao Q R, Tian J D, Li D et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 48, 1501004(2021).
[193] Li J F, Lei H, Wang S Y et al. Research progress in 2‒5 μm all-solid-state mid-infrared high-power fiber laser sources (Invited)[J]. Chinese Journal of Lasers, 51, 0101005(2024).
[194] Luo Z Q, Song L M, Ruan Q J. Progress in research on visible rare-earth-doped fiber lasers: from continuous wave to femtosecond pulses (Invited)[J]. Chinese Journal of Lasers, 51, 0101001(2024).
[195] He C J, Xiao X S, Xu Y T et al. Design and preparation of mid-infrared 7×1 sulfide fiber combiner[J]. Acta Photonica Sinica, 52, 1106003(2023).
[197] Chen Y J, Guo Q. AI for technology: applied practices and future perspectives of technological intelligence in high tech areas[J]. Bulletin of Chinese Academy of Sciences, 39, 34-40(2024).
[199] Hu M L. Artificial intelligence enables femtosecond laser technology[R](2023).
[202] Ren Y K, Shen H, Wang H et al. Investigation on spectrum narrowing technique of fiber laser using nonlinear phase demodulation[J]. Chinese Journal of Lasers, 51, 2206004(2024).
[203] An Y, Chang H X, Li J et al. Smart laser beam analyzer based on deep learning[C], JTu3A.41(2019).
Get Citation
Copy Citation Text
Pu Zhou, Rongtao Su, Can Li, Yanxing Ma, Yuqiu Zhang, Jun Li, Jian Wu, Xiaolin Wang, Jinyong Leng. Beam Combining of High Power Fiber Lasers: Progress, Trend and Prospects (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901003
Category: laser devices and laser physics
Received: Aug. 5, 2024
Accepted: Sep. 11, 2024
Published Online: Oct. 14, 2024
The Author Email: Zhou Pu (zhoupu203@163.com)
CSTR:32183.14.CJL241121