Chinese Journal of Lasers, Volume. 51, Issue 19, 1901003(2024)

Beam Combining of High Power Fiber Lasers: Progress, Trend and Prospects (Invited)

Pu Zhou1、*, Rongtao Su1,2,3, Can Li1, Yanxing Ma1,2,3, Yuqiu Zhang1, Jun Li1, Jian Wu1, Xiaolin Wang1,2,3, and Jinyong Leng1,2,3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, Hunan , China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    References(199)

    [1] Liu S H. Current situation of laser development[J]. Physics Bulletin, 156-160(1966).

    [2] Zhou P[M]. Coherent beam combination technology of fiber lasers(2015).

    [13] Zhou P, He B. Preface to the column “fiber laser beam synthesis”[J]. Infrared and Laser Engineering, 47, 11(2018).

    [14] Li X Y, Zhou P. Special issue on laser beam combining technology[J]. High Power Laser and Particle Beams, 35, 041000(2023).

    [18] Guo L H, Jiang Q W, Wu H L et al. High-brightness blue semiconductor laser source based on grating spectral beam combining[J]. Chinese Journal of Lasers, 51, 1301007(2024).

    [25] Zhou P, Su R T, Ma Y X et al. Coherent beam combining of fiber lasers by actively phase control[J]. Acta Optica Sinica, 43, 1700001(2023).

    [30] Kawahito Y, Wang H Z, Katayama S et al. Ultra high power (100 kW) fiber laser welding of steel[J]. Optics Letters, 43, 4667-4670(2018).

    [37] Zhou P, Xu J M, Jiang M et al. Advanced methods for typical parameter measurements of high-power lasers[J]. National Defense Technology, 44, 9-19(2023).

    [41] Jiang Z F, Lu Y, Liu W G et al. All-fiber spatial mode excitation and adaptive control based on photonic lanterns[J]. Acta Optica Sinica, 43, 1700002(2023).

    [43] Afzal R S, Honea E, Savage-Leuchs M et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[J]. Proceedings of SPIE, 8547, 854706(2012).

    [48] Schmidt O, Andersen T V, Limpert J et al. 187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers[J]. Optics Letters, 34, 226-228(2009).

    [49] Schmidt O, Wirth C, Tsybin I et al. Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources[J]. Optics Letters, 34, 1567-1569(2009).

    [50] Li Z, Li J Z, Zhang K et al. Spectrally-combined nanosecond pulsed fiber laser with an average power of 360 W[J]. Laser & Infrared, 51, 1610-1613(2021).

    [56] Sun R F, Zhang K, Zhang L M et al. 9.6 kW combined light source using dichroic-mirror-based spectral beam combining[J]. High Power Laser and Particle Beams, 35, 121004(2023).

    [57] Xi X M, Yang B L, Wang P et al. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors[J]. Acta Physica Sinica, 72, 184203(2023).

    [58] Wang P, Xi X M, Meng X M et al. Active control of spectral synthesis tilt jitter to realize 8 kW near single mode output[J]. Chinese Journal of Lasers, 50, 2116001(2023).

    [59] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm∶fiber laser[J]. Proceedings of SPIE, 7580, 758012(2010).

    [60] Ren C Y, Shen Y Q, Zheng Y Q et al. Widely-tunable all-fiber Tm doped MOPA with  >1 kW of output power[J]. Optics Express, 31, 22733-22739(2023).

    [62] Liu H, Wang H Y, Wang J W et al. 2 μm ultra-narrow linewidth fiber laser achieves 1 kW near-diffraction-limited output[J]. High Power Laser and Particle Beams, 36, 071001(2024).

    [64] Jiang M, Ma P F, Zhou P et al. Spectral beam combining of fiber laser with wavelength separation broader than 60 nm[J]. Laser Physics, 26, 115104(2016).

    [66] Fan C C, Fu M, Hao X L et al. All-fiber Raman oscillator with 1.8 kW output power[J]. Infrared and Laser Engineering, 53, 20240031(2024).

    [67] Fan C C, Fu M, Yao T F et al. The output power of all-fiber Raman amplifier exceeds 4 kW[J]. Chinese Journal of Lasers, 51, 0616001(2024).

    [69] Želudevičius J, Rutkauskas R, Regelskis K. Coherent beam combining of pulsed fiber amplifiers by noncolinear sum-frequency generation[J]. Optics Letters, 44, 1813-1816(2019).

    [75] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).

    [76] Bi G Y, Liu B W, Yu C M et al. Coherent beam combining-based high-power green femtosecond laser system[J]. Chinese Journal of Lasers, 52, 0201003(2025).

    [80] Hanna M, Guichard F, Zaouter Y et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B: Atomic Molecular Physics, 49, 062004(2016).

    [82] Wang J S, Zhang Y, Wang J L et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 70, 034206(2021).

    [83] Liu B D, Huang Z M, Zhang F et al. Recent progress of temporal coherent combination of chirped pulses in fiber lasers[J]. High Power Laser and Particle Beams, 35, 111001(2023).

    [87] Stark H, Müller M, Kienel M et al. Electro-optically controlled divided-pulse amplification[J]. Optics Express, 25, 13494-13503(2017).

    [89] Zhang Z G. Coherent pulse stacking: an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 54, 120001(2017).

    [91] Pei H Z, Ruppe J, Chen S Y et al. 10 mJ energy extraction from Yb-doped 85 µm core CCC fiber using coherent pulse stacking amplification of fs pulses[C], AW4A.4(2017).

    [95] Huang Z M, Geng D X, Liu B D et al. Short pulse time domain coherent beam combining based on Gires-Tournois interference cavity[J]. Chinese Journal of Lasers, 51, 0716003(2024).

    [96] Su R T, Zhou P, Zhang P F et al. Review on the progress in coherent beam combining of ultra-short fiber lasers (Invited)[J]. Infrared and Laser Engineering, 47, 0103001(2018).

    [98] Wu Y F, Yang B W, Song Y R et al. Coherent combining 64 femtosecond pulses into mJ by delay line stacking of a fiber laser[C], ATh3A.4(2023).

    [99] Xie G H, Luo D P, Tang Z Q et al. 132 W 132 μJ femtosecond pulses from a coherently combined system of two rod-type photonic crystal fibers[J]. Photonics, 10, 1138(2023).

    [100] Wang T, Li C, Liu Y et al. Coherent polarization beam combination of two ultrafast laser channels based on fiber stretcher phase locking[J]. Infrared and Laser Engineering, 52, 20220869(2023).

    [102] Zhang J Y, Ren B, Li C et al. Efficient coherent polarization synthesis of eight-channel ultrafast fiber laser[J]. Chinese Journal of Lasers, 51, 1516001(2024).

    [104] Taylor L R, Feng Y, Calia D B. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8555(2010).

    [105] Lombard L, Valla M, Planchat C et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics Letters, 40, 1030-1033(2015).

    [107] Bi M Z, Su Y W, Ma W Z et al. Space laser communication system based on fiber laser phased array[J]. Journal of Applied Optics, 37, 938-941(2016).

    [108] Geng C, Li F, Zuo J et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 45, 1906-1909(2020).

    [111] Shu B W, Zhang Y Q, Chang H X et al. Integrated coherent beam combining system for orbital-angular-momentum shift-keying-based free-space optical links[J]. Advanced Photonics Nexus, 3, 036003(2024).

    [114] Geisler D J, Yarnall T M, Schieler C M et al. Experimental demonstration of multi-aperture digital coherent combining over a 3.2-km free-space link[J]. Proceedings of SPIE, 10096, 100960C(2017).

    [121] Liu S X, Liu H, Qi X P et al. Coherent beam combining of cylindrical vector beams for power scaling[J]. Optics Letters, 48, 5121-5124(2023).

    [126] Wagner J, Leis A, Armon N et al. Coherent beam combining-unlimited flexibility in laser material processing: an analysis of the effects of CBC on the laser welding process[J]. PhotonicsViews, 19, 60-63(2022).

    [131] Wu H S, Jiang M, Zhou P. Artificial intelligence-assisted laser science and technology: status, opportunities, and challenges[J]. Chinese Journal of Lasers, 50, 1101001(2023).

    [132] Chang Q, Hou T Y, Long J H et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 40, 6542-6547(2022).

    [134] Shaykin A, Kostyukov I, Sergeev A et al. Prospects of PEARL 10 and XCELS laser facilities[J]. The Review of Laser Engineering, 42, 141-144(2014).

    [137] Soulard R, Quinn M N, Mourou G. Design and properties of a coherent amplifying network laser[J]. Applied Optics, 54, 4640-4645(2015).

    [143] Geng C, Yang Y, Li F et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 45, 170692(2018).

    [145] Liu Z J, Zhou P, Ma P F et al. Coherent polarization combination of four fiber amplifiers with high power and narrow line width to achieve 5 kW high brightness laser output[J]. Chinese Journal of Lasers, 44, 0415004(2017).

    [146] Mueller M, Klenke A, Stark H et al. 16 channel coherently-combined ultrafast fiber laser[C], AW4A.3(2017).

    [147] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    [155] Fang S B, Wei Z Y. Sub-optical-cycle coherent waveform synthesis[J]. Acta Optica Sinica, 39, 0126006(2019).

    [156] Rossi G M, Mainz R E, Yang Y D et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nature Photonics, 14, 629-635(2020).

    [159] Zhou P, Chang H X, Su R T et al. Research history and prospects of coherent beam combining of fiber lasers: from perspective of citations (Invited)[J]. Chinese Journal of Lasers, 51, 0121002(2024).

    [160] Hao X L, Li Y, Fan C C et al. LD cladding pumped Raman fiber laser achieves kilowatt output for the first time[J]. Chinese Journal of Lasers, 49, 2416004(2022).

    [161] Zhang Z H, Wei F, Wu H M et al. Coherent beam combining baser source based on an injection‑locked DFB laser array using planar lightwave circuit technology[J]. Chinese Journal of Lasers, 50, 1901009(2023).

    [162] Wang K, Cai J, Ding Y et al. Study on polarization beam combining experimental of mid-infrared quantum cascade laser[J]. Infrared and Laser Engineering, 51, 20210679(2022).

    [163] Zhang M, Wang X, Yang S H et al. High-efficiency fiber combining of long-wave infrared quantum cascade lasers[J]. Acta Optica Sinica, 44, 0814003(2024).

    [164] Zhang Z H, Wei F, Wu H M et al. Coherent beam combining laser source based on an injection-locked DFB laser array using planar lightwave circuit technology[J]. Chinese Journal of Lasers, 50, 1901009(2023).

    [165] Dong Y J, Liu J, Zhao X R et al. Coherent beam combining of 976 nm diode laser based on photonic lantern[J]. Laser & Optoelectronics Progress, 61, 0514006(2024).

    [166] Zhang C, Lin X C, Zhao P F et al. Coherent beam combining technology for diode lasers (Invited)[J]. Laser & Optoelectronics Progress, 61, 0114007(2024).

    [168] Yang H Z, Li X Y, Jiang W H. Comparison of several stochastic parallel optimization control algorithms for adaptive optics system[J]. High Power Laser and Particle Beams, 20, 11-16(2008).

    [172] Wu J, Ma Y X, Ma P F et al. Fiber laser coherent synthesis 20 kW high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).

    [175] Huang L J, Lü H B, Zhou P et al. Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm[J]. IEEE Photonics Technology Letters, 27, 2280-2283(2015).

    [176] Chen F, Zhao S B, Wang Q et al. Modal decomposition of a fibre laser beam based on the push-broom stochastic parallel gradient descent algorithm[J]. Optics Communications, 481, 126538(2021).

    [179] Wu J L, Hu C W, Liu R H et al. Adam SPGD algorithm in freeform surface in-process interferometry[J]. Optics Express, 30, 32528-32539(2022).

    [182] Ren S, Lai W C, Wang G J et al. Experimental study on the impact of signal bandwidth on the transverse mode instability threshold of fiber amplifiers[J]. Optics Express, 30, 7845-7853(2022).

    [184] Wang Y S, Peng W J, Wang J et al. 10 GHz narrow line wide line polarized near-single-mode all-fiber laser achieves 5 kW power output[J]. Chinese Journal of Lasers, 50, 2416002(2023).

    [185] Zhou P, Ma P F, Ren S et al. High-power narrow linewidth fiber laser: progress and prospect[J]. Information Countermeasure Technology, 2, 16-36(2023).

    [186] Jin Y X, Han Y X, Cao H C et al. Intertwined development of near-infrared high-power lasers and reflective holographic surface-relief diffraction gratings[J]. Chinese Journal of Lasers, 51, 1101028(2024).

    [191] Xiao Q R, Tian J D, Li D et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 48, 1501004(2021).

    [193] Li J F, Lei H, Wang S Y et al. Research progress in 2‒5 μm all-solid-state mid-infrared high-power fiber laser sources (Invited)[J]. Chinese Journal of Lasers, 51, 0101005(2024).

    [194] Luo Z Q, Song L M, Ruan Q J. Progress in research on visible rare-earth-doped fiber lasers: from continuous wave to femtosecond pulses (Invited)[J]. Chinese Journal of Lasers, 51, 0101001(2024).

    [195] He C J, Xiao X S, Xu Y T et al. Design and preparation of mid-infrared 7×1 sulfide fiber combiner[J]. Acta Photonica Sinica, 52, 1106003(2023).

    [197] Chen Y J, Guo Q. AI for technology: applied practices and future perspectives of technological intelligence in high tech areas[J]. Bulletin of Chinese Academy of Sciences, 39, 34-40(2024).

    [199] Hu M L. Artificial intelligence enables femtosecond laser technology[R](2023).

    [202] Ren Y K, Shen H, Wang H et al. Investigation on spectrum narrowing technique of fiber laser using nonlinear phase demodulation[J]. Chinese Journal of Lasers, 51, 2206004(2024).

    [203] An Y, Chang H X, Li J et al. Smart laser beam analyzer based on deep learning[C], JTu3A.41(2019).

    Tools

    Get Citation

    Copy Citation Text

    Pu Zhou, Rongtao Su, Can Li, Yanxing Ma, Yuqiu Zhang, Jun Li, Jian Wu, Xiaolin Wang, Jinyong Leng. Beam Combining of High Power Fiber Lasers: Progress, Trend and Prospects (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Aug. 5, 2024

    Accepted: Sep. 11, 2024

    Published Online: Oct. 14, 2024

    The Author Email: Zhou Pu (zhoupu203@163.com)

    DOI:10.3788/CJL241121

    CSTR:32183.14.CJL241121

    Topics