Molecular Plant, Volume. 18, Issue 8, 1284(2025)

Structural basis of auxin recognition and transport by the plant influx carrier AUX1

Chen Huiwen, Fan Junping, Chi Cheng, Zhao Jun, Wu Di, Lei Xiaoguang, Deng Xing Wang, and Jiang Daohua
References(48)

[1] [1] Adamowski, M., and Friml, J.(2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell27:20-32.

[2] [2] Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and Adams, P.D.(2018). Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol.74:531-544.

[3] [3] Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., and Feldmann, K.A.(1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science273:948-950.

[4] [4] Carrier, D.J., Bakar, N.T.A., Swarup, R., Callaghan, R., Napier, R.M., Bennett, M.J., and Kerr, I.D.(2008). The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Plant Physiol.148:529-535.

[5] [5] Del Alamo, D., Meiler, J., and McHaourab, H.S.(2022). Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J. Mol. Biol.434:167746.

[6] [6] Delbarre, A., Muller, P., Imhoff, V., and Guern, J.(1996). Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta198:532-541.

[7] [7] Emsley, P., and Cowtan, K.(2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60:2126-2132.

[8] [8] Geier, U., Werner, O., and Bopp, M.(1990). Indole-3-acetic acid uptake in isolated protoplasts of the moss Funaria hygrometrica. Physiol. Plantarum80:584-592.

[9] [9] Hertel, R., Lomax, T.L., and Briggs, W.R.(1983). Auxin transport in membrane vesicles from Cucurbita pepo L. Planta157:193-201.

[10] [10] Holm, L.(2022). Dali server: structural unification of protein families. Nucleic Acids Res.50:W210-W215.

[11] [11] Huang, L.K., Liao, Y.Y., Lin, W.H., Lin, S.M., Liu, T.Y., Lee, C.H., and Pan, R.L.(2019). Potassium Stimulation of IAA Transport Mediated by the Arabidopsis Importer AUX1 Investigated in a Heterologous Yeast System. J. Membr. Biol.252:183-194.

[12] [12] Jungnickel, K.E.J., Parker, J.L., and Newstead, S.(2018). Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat. Commun.9:550.

[13] [13] Kazmier, K., Claxton, D.P., and McHaourab, H.S.(2017). Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr. Opin. Struct. Biol.45:100-108.

[14] [14] Korasick, D.A., Enders, T.A., and Strader, L.C.(2013). Auxin biosynthesis and storage forms. J. Exp. Bot.64:2541-2555.

[15] [15] Kramer, E.M., and Bennett, M.J.(2006). Auxin transport: a field in flux. Trends Plant Sci.11:382-386.

[16] [16] Krishnamurthy, H., and Gouaux, E.(2012). X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature481:469-474.

[17] [17] Lavy, M., and Estelle, M.(2016). Mechanisms of auxin signaling. Development143:3226-3229.

[18] [18] Lei, H.T., Ma, J., Sanchez Martinez, S., and Gonen, T.(2018). Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat. Struct. Mol. Biol.25:522-527.

[19] [19] Leyser, O.(2006). Dynamic integration of auxin transport and signalling. Curr. Biol.16:R424-R433.

[20] [20] Lomax, T.L., Mehlhorn, R.J., and Briggs, W.R.(1985). Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Proc. Natl. Acad. Sci. USA82:6541-6545.

[21] [21] Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C., and Bennett, M.J.(1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J.18:2066-2073.

[22] [22] Peret, B., Swarup, K., Ferguson, A., Seth, M., Yang, Y., Dhondt, S., James, N., Casimiro, I., Perry, P., Syed, A., et al.(2012). AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell24:2874-2885.

[23] [23] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E.(2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem.25:1605-1612.

[24] [24] Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, T.E.(2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci.30:70-82.

[25] [25] Pickett, F.B., Wilson, A.K., and Estelle, M.(1990). The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol.94:1462-1466.

[26] [26] Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A.(2017). cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods14:290-296.

[27] [27] Rahman, A., Ahamed, A., Amakawa, T., Goto, N., and Tsurumi, S.(2001). Chromosaponin I specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Plant Physiol.125:990-1000.

[28] [28] Rubery, P.H., and Sheldrake, A.R.(1973). Effect of pH and surface charge on cell uptake of auxin. Nat. New Biol.244:285-288.

[29] [29] Rubery, P.H., and Sheldrake, A.R.(1974). Carrier-mediated auxin transport. Planta118:101-121.

[30] [30] Schulz, L., Ung, K.L., Zuzic, L., Koutnik-Abele, S., Schiott, B., Stokes, D.L., Pedersen, B.P., and Hammes, U.Z.(2025). Transport of phenoxyacetic acid herbicides by PIN-FORMED auxin transporters. Nat. Plants.

[31] [31] Shaffer, P.L., Goehring, A., Shankaranarayanan, A., and Gouaux, E.(2009). Structure and mechanism of a Na+-independent amino acid transporter. Science325:1010-1014.

[32] [32] Singh, G., Retzer, K., Vosolsobe, S., and Napier, R.(2018). Advances in Understanding the Mechanism of Action of the Auxin Permease AUX1. Int. J. Mol. Sci.19:3391.

[33] [33] Song, Y.(2014). Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant Biol.56:106-113.

[34] [34] Su, N., Zhu, A., Tao, X., Ding, Z.J., Chang, S., Ye, F., Zhang, Y., Zhao, C., Chen, Q., Wang, J., et al.(2022). Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature609:616-621.

[35] [35] Swarup, R., and Bhosale, R.(2019). Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. Front. Plant Sci.10:1306.

[36] [36] Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K., and Bennett, M.(2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev.15:2648-2653.

[37] [37] Swarup, R., Kargul, J., Marchant, A., Zadik, D., Rahman, A., Mills, R., Yemm, A., May, S., Williams, L., Millner, P., et al.(2004). Structurefunction analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell16:3069-3083.

[38] [38] Swarup, R., Kramer, E.M., Perry, P., Knox, K., Leyser, H.M.O., Haseloff, J., Beemster, G.T.S., Bhalerao, R., and Bennett, M.J.(2005). Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol.7:1057-1065.

[39] [39] Swarup, R., and Pret, B.(2012). AUX/LAX family of auxin influx carriersan overview. Front. Plant Sci.3:225.

[40] [40] Teale, W.D., Paponov, I.A., and Palme, K.(2006). Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol.7:847-859.

[41] [41] Ung, K.L., Winkler, M., Schulz, L., Kolb, M., Janacek, D.P., Dedic, E., Stokes, D.L., Hammes, U.Z., and Pedersen, B.P.(2022). Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature609:605-610.

[42] [42] Vandenbussche, F., Petrsek, J., Zdnkov, P., Hoyerov, K., Pesek, B., Raz, V., Swarup, R., Bennett, M., Zazmalov, E., Benkov, E., and Van Der Straeten, D.(2010). The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development137:597-606.

[43] [43] Vanneste, S., and Friml, J.(2009). Auxin: a trigger for change in plant development. Cell136:1005-1016.

[44] [44] Wang, R., and Estelle, M.(2014). Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol.21:51-58.

[45] [45] Yamashita, A., Singh, S.K., Kawate, T., Jin, Y., and Gouaux, E.(2005). Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature437:215-223.

[46] [46] Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., and Nielsen, E.(2006). High-affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol.16:1123-1127.

[47] [47] Yang, Z., Wei, H., Gan, Y., Liu, H., Cao, Y., An, H., Que, X., Gao, Y., Zhu, L., Tan, S., et al.(2025). Structural insights into auxin influx mediated by the Arabidopsis AUX1. Cell.

[48] [48] Yang, Z., Xia, J., Hong, J., Zhang, C., Wei, H., Ying, W., Sun, C., Sun, L., Mao, Y., Gao, Y., et al.(2022). Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature609:611-615.

Tools

Get Citation

Copy Citation Text

Chen Huiwen, Fan Junping, Chi Cheng, Zhao Jun, Wu Di, Lei Xiaoguang, Deng Xing Wang, Jiang Daohua. Structural basis of auxin recognition and transport by the plant influx carrier AUX1[J]. Molecular Plant, 2025, 18(8): 1284

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: May. 10, 2025

Accepted: Aug. 25, 2025

Published Online: Aug. 25, 2025

The Author Email:

DOI:10.1016/j.molp.2025.06.015

Topics