Chinese Journal of Lasers, Volume. 49, Issue 24, 2407203(2022)

Local Polarization Properties Extraction Based on Spectral Domain Polarization Sensitive Optical Coherence Tomography and Quantitative Burn Depth Measurement of Biological Tissues

Tong Wu1、*, Xinkang Zhou1, Youwen Liu2、**, Jiming Wang2, Yuangang Lu1, Hong Shen3, Xiaorong Gu2, Yaoyao Shi1, and Chongjun He1
Author Affiliations
  • 1Key Laboratory of Space Photoelectric Detection and Perception, Ministry of Industry and Information Technology, College of Astronautics of Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
  • 2College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
  • 3Jiangsu Key Laboratory of Oral Diseases, Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 211106, Jiangsu, China
  • show less
    References(39)

    [1] Monstrey S, Hoeksema H, Verbelen J et al. Assessment of burn depth and burn wound healing potential[J]. Burns, 34, 761-769(2008).

    [2] Sheridan R L. Comprehensive treatment of burns[J]. Current Problems in Surgery, 38, 657-756(2001).

    [3] Pierce M C, Sheridan R L, Park B H et al. Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography[J]. Burns, 30, 511-517(2004).

    [4] Ho-Asjoe M, Chronnell C M, Frame J D et al. Immunohistochemical analysis of burn depth[J]. The Journal of Burn Care & Rehabilitation, 20, 207-211(1999).

    [5] Watts A M I, Tyler M P H, Perry M E et al. Burn depth and its histological measurement[J]. Burns, 27, 154-160(2001).

    [6] Holland A J A, Martin H C O, Cass D T. Laser Doppler imaging prediction of burn wound outcome in children[J]. Burns, 28, 11-17(2002).

    [7] Jeng J C, Bridgeman A, Shivnan L et al. Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial[J]. Burns, 29, 665-670(2003).

    [8] Iraniha S, Cinat M E, VanderKam V M et al. Determination of burn depth with noncontact ultrasonography[J]. The Journal of Burn Care & Rehabilitation, 21, 333-338(2000).

    [9] Bauer J A, Sauer T. Cutaneous 10 MHz ultrasound B scan allows the quantitative assessment of burn depth[J]. Burns, 15, 49-51(1989).

    [10] Nettelblad H, Thuomas K Å, Sjöberg F. Magnetic resonance imaging: a new diagnostic aid in the care of high-voltage electrical burns[J]. Burns, 22, 117-119(1996).

    [11] Still J M, Law E J, Klavuhn K G et al. Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial[J]. Burns, 27, 364-371(2001).

    [12] Liu Y, Yang Y L, Yue X. Optical coherence tomography angiography and its applications in ophthalmology[J]. Laser & Optoelectronics Progress, 57, 180002(2020).

    [13] Xue P. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers, 48, 1517001(2021).

    [14] Cense B, Chen T C, Park B H et al. In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization sensitive optical coherence tomography[J]. Optics Letters, 27, 1610-1612(2002).

    [15] Wang X J, Milner T E, de Boer J F et al. Characterization of dentin and enamel by use of optical coherence tomography[J]. Applied Optics, 38, 2092-2096(1999).

    [16] Golde J, Tetschke F, Walther J et al. Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 23, 071203(2018).

    [17] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).

    [18] Park B H, Saxer C E, Srinivas S M et al. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 6, 474-479(2001).

    [19] Srinivas S M, de Boer J F, Park B H et al. Determination of burn depth by polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 9, 207-212(2004).

    [20] Kim K H, Pierce M C, Maguluri G N et al. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 17, 066012(2012).

    [21] Schoenenberger K, Colston B W, Maitland D J et al. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography[J]. Applied Optics, 37, 6026-6036(1998).

    [22] de Boer J F, Srinivas S M, Malekafzali A et al. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography[J]. Optics Express, 3, 212-218(1998).

    [23] Jiao S L, Yu W R, Stoica G et al. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging[J]. Applied Optics, 42, 5191-5197(2003).

    [24] Todorović M, Jiao S L, Ai J et al. In vivo burn imaging using Mueller optical coherence tomography[J]. Optics Express, 16, 10279-10284(2008).

    [25] Ding Z Y, Liang C P, Tang Q G et al. Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix[J]. Biomedical Optics Express, 6, 1828-1843(2015).

    [26] Davé D P, Akkin T, Milner T E. Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence[J]. Optics Letters, 28, 1775-1777(2003).

    [27] Götzinger E, Baumann B, Pircher M et al. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography[J]. Optics Express, 17, 22704-22717(2009).

    [28] Baumann B, Choi W, Potsaid B et al. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit[J]. Optics Express, 20, 10229-10241(2012).

    [29] Wang Z, Lee H C, Ahsen O O et al. Depth-encoded all-fiber swept source polarization sensitive OCT[J]. Biomedical Optics Express, 5, 2931-2949(2014).

    [30] Jaspers M E H, Feroldi F, Vlig M et al. In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density[J]. Journal of Biomedical Optics, 22, 121712(2017).

    [31] Trasischker W, Zotter S, Torzicky T et al. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer[J]. Biomedical Optics Express, 5, 2798-2809(2014).

    [32] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005).

    [33] Baumann B, Götzinger E, Pircher M et al. Single camera based spectral domain polarization sensitive optical coherence tomography[J]. Optics Express, 15, 1054-1063(2007).

    [34] Cense B, Mujat M, Chen T C et al. Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera[J]. Optics Express, 15, 2421-2431(2007).

    [35] Lee S W, Jeong H W, Kim B M. High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 μm[J]. Journal of Biomedical Optics, 15, 010501(2010).

    [36] Fan C M, Wang Y, Wang R K. Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection[J]. Optics Express, 15, 7950-7961(2007).

    [37] Wu T, Cao K M, Wang X H et al. Single input state, single mode fiber based spectral domain polarization sensitive optical coherence tomography using a single linear-in-wavenumber spectral camera[J]. Optics and Lasers in Engineering, 127, 105948(2020).

    [38] Fan C M, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography[J]. Optics Letters, 37, 1415-1417(2012).

    [39] Fan C M, Yao G. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 17, 110501(2012).

    Tools

    Get Citation

    Copy Citation Text

    Tong Wu, Xinkang Zhou, Youwen Liu, Jiming Wang, Yuangang Lu, Hong Shen, Xiaorong Gu, Yaoyao Shi, Chongjun He. Local Polarization Properties Extraction Based on Spectral Domain Polarization Sensitive Optical Coherence Tomography and Quantitative Burn Depth Measurement of Biological Tissues[J]. Chinese Journal of Lasers, 2022, 49(24): 2407203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Jul. 6, 2022

    Accepted: Sep. 1, 2022

    Published Online: Nov. 15, 2022

    The Author Email: Wu Tong (wutong@nuaa.edu.cn), Liu Youwen (ywliu@nuaa.edu.cn)

    DOI:10.3788/CJL202249.2407203

    Topics