Chinese Journal of Lasers, Volume. 49, Issue 24, 2407203(2022)
Local Polarization Properties Extraction Based on Spectral Domain Polarization Sensitive Optical Coherence Tomography and Quantitative Burn Depth Measurement of Biological Tissues
[1] Monstrey S, Hoeksema H, Verbelen J et al. Assessment of burn depth and burn wound healing potential[J]. Burns, 34, 761-769(2008).
[2] Sheridan R L. Comprehensive treatment of burns[J]. Current Problems in Surgery, 38, 657-756(2001).
[3] Pierce M C, Sheridan R L, Park B H et al. Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography[J]. Burns, 30, 511-517(2004).
[4] Ho-Asjoe M, Chronnell C M, Frame J D et al. Immunohistochemical analysis of burn depth[J]. The Journal of Burn Care & Rehabilitation, 20, 207-211(1999).
[5] Watts A M I, Tyler M P H, Perry M E et al. Burn depth and its histological measurement[J]. Burns, 27, 154-160(2001).
[6] Holland A J A, Martin H C O, Cass D T. Laser Doppler imaging prediction of burn wound outcome in children[J]. Burns, 28, 11-17(2002).
[7] Jeng J C, Bridgeman A, Shivnan L et al. Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial[J]. Burns, 29, 665-670(2003).
[8] Iraniha S, Cinat M E, VanderKam V M et al. Determination of burn depth with noncontact ultrasonography[J]. The Journal of Burn Care & Rehabilitation, 21, 333-338(2000).
[9] Bauer J A, Sauer T. Cutaneous 10 MHz ultrasound B scan allows the quantitative assessment of burn depth[J]. Burns, 15, 49-51(1989).
[10] Nettelblad H, Thuomas K Å, Sjöberg F. Magnetic resonance imaging: a new diagnostic aid in the care of high-voltage electrical burns[J]. Burns, 22, 117-119(1996).
[11] Still J M, Law E J, Klavuhn K G et al. Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial[J]. Burns, 27, 364-371(2001).
[12] Liu Y, Yang Y L, Yue X. Optical coherence tomography angiography and its applications in ophthalmology[J]. Laser & Optoelectronics Progress, 57, 180002(2020).
[13] Xue P. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers, 48, 1517001(2021).
[14] Cense B, Chen T C, Park B H et al. In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization sensitive optical coherence tomography[J]. Optics Letters, 27, 1610-1612(2002).
[15] Wang X J, Milner T E, de Boer J F et al. Characterization of dentin and enamel by use of optical coherence tomography[J]. Applied Optics, 38, 2092-2096(1999).
[16] Golde J, Tetschke F, Walther J et al. Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 23, 071203(2018).
[17] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).
[18] Park B H, Saxer C E, Srinivas S M et al. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 6, 474-479(2001).
[19] Srinivas S M, de Boer J F, Park B H et al. Determination of burn depth by polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 9, 207-212(2004).
[20] Kim K H, Pierce M C, Maguluri G N et al. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 17, 066012(2012).
[21] Schoenenberger K, Colston B W, Maitland D J et al. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography[J]. Applied Optics, 37, 6026-6036(1998).
[22] de Boer J F, Srinivas S M, Malekafzali A et al. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography[J]. Optics Express, 3, 212-218(1998).
[23] Jiao S L, Yu W R, Stoica G et al. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging[J]. Applied Optics, 42, 5191-5197(2003).
[24] Todorović M, Jiao S L, Ai J et al. In vivo burn imaging using Mueller optical coherence tomography[J]. Optics Express, 16, 10279-10284(2008).
[25] Ding Z Y, Liang C P, Tang Q G et al. Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix[J]. Biomedical Optics Express, 6, 1828-1843(2015).
[26] Davé D P, Akkin T, Milner T E. Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence[J]. Optics Letters, 28, 1775-1777(2003).
[27] Götzinger E, Baumann B, Pircher M et al. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography[J]. Optics Express, 17, 22704-22717(2009).
[28] Baumann B, Choi W, Potsaid B et al. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit[J]. Optics Express, 20, 10229-10241(2012).
[29] Wang Z, Lee H C, Ahsen O O et al. Depth-encoded all-fiber swept source polarization sensitive OCT[J]. Biomedical Optics Express, 5, 2931-2949(2014).
[30] Jaspers M E H, Feroldi F, Vlig M et al. In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density[J]. Journal of Biomedical Optics, 22, 121712(2017).
[31] Trasischker W, Zotter S, Torzicky T et al. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer[J]. Biomedical Optics Express, 5, 2798-2809(2014).
[32] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005).
[33] Baumann B, Götzinger E, Pircher M et al. Single camera based spectral domain polarization sensitive optical coherence tomography[J]. Optics Express, 15, 1054-1063(2007).
[34] Cense B, Mujat M, Chen T C et al. Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera[J]. Optics Express, 15, 2421-2431(2007).
[35] Lee S W, Jeong H W, Kim B M. High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 μm[J]. Journal of Biomedical Optics, 15, 010501(2010).
[36] Fan C M, Wang Y, Wang R K. Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection[J]. Optics Express, 15, 7950-7961(2007).
[37] Wu T, Cao K M, Wang X H et al. Single input state, single mode fiber based spectral domain polarization sensitive optical coherence tomography using a single linear-in-wavenumber spectral camera[J]. Optics and Lasers in Engineering, 127, 105948(2020).
[38] Fan C M, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography[J]. Optics Letters, 37, 1415-1417(2012).
[39] Fan C M, Yao G. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 17, 110501(2012).
Get Citation
Copy Citation Text
Tong Wu, Xinkang Zhou, Youwen Liu, Jiming Wang, Yuangang Lu, Hong Shen, Xiaorong Gu, Yaoyao Shi, Chongjun He. Local Polarization Properties Extraction Based on Spectral Domain Polarization Sensitive Optical Coherence Tomography and Quantitative Burn Depth Measurement of Biological Tissues[J]. Chinese Journal of Lasers, 2022, 49(24): 2407203
Category: Biomedical Optical Imaging
Received: Jul. 6, 2022
Accepted: Sep. 1, 2022
Published Online: Nov. 15, 2022
The Author Email: Wu Tong (wutong@nuaa.edu.cn), Liu Youwen (ywliu@nuaa.edu.cn)