NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040007(2023)
QCD phase structure from holographic models
[1] Csernai L P, Röhrich D. Third flow component as QGP signal[J]. Physics Letters B, 458, 454-459(1999).
[2] STAR Collaboration. Global Λ hyperon polarization in nuclear collisions[J]. Nature, 548, 62-65(2017).
[3] Deng W T, Huang X G. Vorticity in heavy-ion collisions[J]. Physical Review C, 93, 064907(2016).
[4] Wang X N, Gyulassy M. Gluon shadowing and jet quenching in A+A collisions at s =200 A GeV[J]. Physical Review Letters, 68, 1480-1483(1992).
[5] Adler C, Ahammed Z, Allgower C et al. Disappearance of back-to-back high-pT hadron correlations in central Au+Au collisions at sNN=200 GeV[J]. Physical Review Letters, 90, 082302(2003).
[6] Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation[J]. Physics Letters B, 178, 416-422(1986).
[7] Zhu Z R, Chen J X, Liu X M et al. Thermodynamics and energy loss in D dimensions from holographic QCD model[J]. The European Physical Journal C, 82, 560(2022).
[8] Zhao Y Q, Hou D F. Vector meson spectral function in a dynamical AdS/QCD model[J]. The European Physical Journal C, 82, 1102(2022).
[9] Zhu Z R, Chen J, Hou D F. Gravitational waves from holographic QCD phase transition with gluon condensate[J]. The European Physical Journal A, 58, 104(2022).
[10] Maldacena J M. The large-N limit of superconformal field theories and supergravity[J]. International Journal of Theoretical Physics, 38, 1113-1133(1999).
[11] Witten E. Anti de sitter space and holography[J]. Advances in Theoretical and Mathematical Physics, 2, 253-291(1998).
[12] Gubser S S, Klebanov I R, Polyakov A M. Gauge theory correlators from non-critical string theory[J]. Physics Letters B, 428, 105-114(1998).
[13] Erlich J, Katz E, Son D T et al. QCD and a holographic model of hadrons[J]. Physical Review Letters, 95, 261602(2005).
[14] Karch A, Katz E, Son D T et al. Linear confinement and AdS/QCD[J]. Physical Review D, 74, 015005(2006).
[15] Bohra H, Dudal D, Hajilou A et al. Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model[J]. Physics Letters B, 801, 135184(2020).
[16] Aref'eva I Y, Ermakov A, Rannu K et al. Holographic model for light quarks in anisotropic hot dense QGP with external magnetic field[J]. The European Physical Journal C, 83, 79(2023).
[17] Grefa J, Hippert M, Noronha J et al. Transport coefficients of the quark-gluon plasma at the critical point and across the first-order line[J]. Physical Review D, 106, 034024(2022).
[18] Cai R G, He S, Li L et al. Probing QCD critical point and induced gravitational wave by black hole physics[J]. Physical Review D, 106, L121902(2022).
[19] Chen Y D, Li D N, Huang M. Inhomogeneous chiral condensation under rotation in the holographic QCD[J]. Physical Review D, 106, 106002(2022).
[20] Braga N R F, Faulhaber L F, Junqueira O C. Confinement-deconfinement temperature for a rotating quark-gluon plasma[J]. Physical Review D, 105, 106003(2022).
[21] Chen X, Zhang L, Li D N et al. Gluodynamics and deconfinement phase transition under rotation from holography[J]. Journal of High Energy Physics, 132(2021).
[22] Hawking S W, Page D N. Thermodynamics of black holes in anti-de Sitter space[J]. Communications in Mathematical Physics, 87, 577-588(1983).
[23] Herzog C P. Holographic prediction for the deconfinement temperature[J]. Physical Review Letters, 98, 091601(2007).
[24] Erices C, Martínez C. Rotating hairy black holes in arbitrary dimensions[J]. Physical Review D, 97, 024034(2018).
[25] Gaete M B, Guajardo L, Hassaïne M. A Cardy-like formula for rotating black holes with planar horizon[J]. Journal of High Energy Physics, 92(2017).
[26] Jiang Y, Liao J F. Pairing phase transitions of matter under rotation[J]. Physical Review Letters, 117, 192302(2016).
[27] Chernodub M N, Gongyo S. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[J]. Journal of High Energy Physics, 136(2017).
[28] Braguta V V, Kotov A Y, Kuznedelev D D et al. Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[J]. Physical Review D, 103, 094515(2021).
[29] Yamamoto A. Overview of external electromagnetism and rotation in lattice QCD[J]. The European Physical Journal A, 57, 211(2021).
[30] Chernodub M N. Inhomogeneous confining-deconfining phases in rotating plasmas[J]. Physical Review D, 103, 054027(2021).
[31] Fujimoto Y, Fukushima K, Hidaka Y. Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia[J]. Physics Letters B, 816, 136184(2021).
[32] Liu H, Rajagopal K, Wiedemann U A. Calculating the jet quenching parameter[J]. Physical Review Letters, 97, 182301(2006).
[33] Kumar A, Majumder A, Weber J H. Jet transport coefficient q^ in lattice QCD[J]. Physical Review D, 106, 034505(2022).
[34] Csáki C, Reece M. Toward a systematic holographic QCD: a braneless approach[J]. Journal of High Energy Physics, 2007, 62(2007).
[35] Kim Y, Lee B H, Park C et al. Gluon condensation at finite temperature via AdS/CFT[J]. Journal of High Energy Physics, 2007, 105(2007).
[36] Caprini C, Hindmarsh M, Huber S et al. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions[J]. Journal of Cosmology and Astroparticle Physics, 2016, 1(2016).
Get Citation
Copy Citation Text
Zhourun ZHU, Yanqing ZHAO, Defu HOU. QCD phase structure from holographic models[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040007
Category: Research Articles
Received: Dec. 28, 2022
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: HOU Defu (houdf@mail.ccnu.edu.cn)