Infrared and Laser Engineering, Volume. 51, Issue 2, 20220086(2022)
Simulation of the near-field focusing and the far-field imaging of microspherical lenses: A review
[1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für Mikroskopische Anatomie, 9, 413-418(1873).
[2] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. Journal of Cellular Physiology, 59, 223-239(1962).
[3] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate[J]. Science, 217, 1252-1255(1982).
[4] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 59, 427(1996).
[5] Axelrod D. Total internal reflection fluorescence microscopy in cell biology[J]. Traffic, 2, 764-774(2001).
[6] [6] Diaspro A. Confocal TwoPhoton Microscopy: Foundations, Applications Advances[M]. Hoboken: WileyLiss, 2001.
[7] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).
[8] Huisken J, Swoger J, Bene F D, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 305, 1007-1009(2004).
[9] Olarte O E, Andilla J, Gualda E J, et al. Light-sheet microscopy: A tutorial[J]. Advances in Optics and Photonics, 10, 111-179(2018).
[10] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[11] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[12] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[13] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 300, 82-86(2003).
[14] Evanko D. Label-free microscopy[J]. Nature Methods, 7, 36(2010).
[15] Zangle T A, Teitell M A. Live-cell mass profiling: An emerging approach in quantitative biophysics[J]. Nature Methods, 11, 1221-1228(2014).
[16] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 9, 686-698(1942).
[17] Zhou R, Wu M, Shen F, et al. Super-resolution microscopic effect of microsphere based on the near-field optics[J]. Acta Physica Sinca, 66, 140702(2017).
[18] Vobornik D, Vobornik S. Scanning near-field optical microscopy[J]. Bosnian Journal of Basic Medical Sciences, 8, 63-71(2008).
[19] Lee J Y, Hong B H, Kim W Y, et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses[J]. Nature, 460, 498-501(2009).
[20] Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2, 218(2011).
[21] Hao X, Kuang C, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 99, 20310(2011).
[22] Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 101, 141128(2012).
[23] Vlad A, Huynen I, Melinte S. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles[J]. Nanotechnology, 23, 285708(2012).
[24] Lee S, Li L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy[J]. Optics Communications, 334, 253-257(2015).
[25] Yan Y, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 8, 1809-1816(2014).
[26] Wang F, Liu L, Yu H, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging[J]. Nature Communications, 7, 13748(2016).
[27] Jin G, Bachman H, Naquin T D, et al. Acoustofluidic scanning nanoscope with high resolution and large field of view[J]. ACS Nano, 14, 8624-8633(2020).
[28] Zhang T, Yu H, Li P, et al. Microsphere-based super-resolution imaging for visualized nanomanipulation[J]. ACS Applied Materials & Interfaces, 12, 48093-48100(2020).
[29] Luo H, Yu H, Wen Y, et al. Enhanced high-quality super-resolution imaging in air using microsphere lens group[J]. Optics Letters, 45, 2981-2984(2020).
[30] Fan W, Yan B, Wang Z, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2, e1600901(2016).
[31] Chen X, Wu T, Gong Z, et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses[J]. Photonics Research, 8, 225-234(2020).
[32] Ye R, Ye Y-H, Ma H F, et al. Experimental far-field imaging properties of a
[33] Ye R, Ye Y-H, Ma H F, et al. Experimental imaging properties of immersion microscale spherical lenses[J]. Scientific Reports, 4, 3769(2014).
[34] Guo M, Ye Y-H, Hou J, et al. Experimental far-field imaging properties of high refractive index microsphere lens[J]. Photonics Research, 3, 339-342(2015).
[35] Yang S, Wang F, Ye Y-H, et al. Influence of the photonic nanojet of microspheres on microsphere imaging[J]. Optics Express, 25, 27551-27558(2017).
[36] Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion[J]. Applied Physics Letters, 112, 023101(2018).
[37] Yang S, Wang X, Wang J, et al. Reduced distortion in high-index microsphere imaging by partial immersion[J]. Applied Optics, 57, 7818-7822(2018).
[38] Yang S, Cao Y, Shi Q, et al. Label-free super-resolution imaging of transparent dielectric objects assembled on silver film by a microsphere-assisted microscope[J]. Journal of Physical Chemistry C, 123, 28353-28358(2019).
[39] Cao Y, Yang S, Wang J, et al. Surface plasmon enhancement for microsphere-assisted super-resolution imaging of metallodielectric nanostructures[J]. Journal of Applied Physics, 127, 233103(2020).
[40] Yang S, Ye Y-H, Shi Q, et al. Converting evanescent waves into propagating waves: The super-resolution mechanism in microsphere-assisted microscopy[J]. Journal of Physical Chemistry C, 124, 25951-25956(2020).
[41] Wang Y, Guo S, Wang D, et al. Resolution enhancement phase-contrast imaging by microsphere digital holography[J]. Optics Communications, 366, 81-87(2016).
[42] Leong-Hoi A, Hairaye C, Perrin S, et al. High resolution microsphere-assisted interference microscopy for 3 D characterization of nanomaterials[J]. Physica Status Solidi A, 215, 1700858(2018).
[43] Xie Z, Hu S, Tang Y, et al. 3 D super-resolution reconstruction using microsphere-assisted structured illumination microscopy[J]. IEEE Photonics Technology Letters, 31, 1783-1786(2019).
[44] Chen L, Zhou Y, Li Y, et al. Microsphere enhanced optical imaging and patterning: From physics to applications[J]. Applied Physics Reviews, 6, 021304(2019).
[45] Duan Y, Barbastathis G, Zhang B. Classical imaging theory of a microlens with super-resolution[J]. Optics Letters, 38, 2988-2990(2013).
[46] Hoang T X, Duan Y, Chen X, et al. Focusing and imaging in microsphere-based microscopy[J]. Optics Express, 23, 12337-12353(2015).
[47] Shang Q, Tang F, Yu L, et al. Super-resolution imaging with patchy microspheres[J]. Photonics, 8, 513(2021).
[48] Luk’Yanchuk B S, Paniagua-Domínguez R, Minin I V, et al. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow[J]. Optical Materials Express, 7, 1820-1847(2017).
[49] Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 16, 4862-4870(2016).
[50] Darafsheh A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy[J]. Optics Letters, 42, 735(2017).
[51] [51] Chen X, Wu T, Gong Z, et al. Lipid lets as endogenous intracellular microlenses[J]. Light: Science & Applications, 2021, 10: 242.
[52] Yue L, Minin O V, Wang Z, et al. Photonic hook: A new curved light beam[J]. Optics Letters, 43, 771-774(2018).
[53] Minin I V, Minin O V, Latyba G M, et al. Experimental observation of a photonic hook[J]. Applied Physics Letters, 114, 031105(2019).
[54] Liu C Y, Chung H J, E H P. Reflective photonic hook achieved by a dielectric-coated concave hemicylindrical mirror[J]. Journal of the Optical Society of America B, 37, 2528-2533(2020).
[55] Minin I V, Minin O V, Liu C Y, et al. Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder[J]. Optics Letters, 45, 4899-4902(2020).
[56] Gu G, Zhang P, Chen S, et al. Inflection point: A perspective on photonic nanojets[J]. Photonics Research, 9, 1157-1171(2021).
[57] Geints Y E, Minin I V, Minin O V. Tailoring “photonic hook” from Janus dielectric microbar[J]. Journal of Optics, 22, 065606(2020).
[58] Gu G, Shao L, Song J, et al. Photonic hooks from Janus microcylinders[J]. Optics Express, 27, 37771-37780(2019).
[59] Shen X, Gu G, Shao L, et al. Twin photonic hooks generated by twin-ellipse microcylinder[J]. IEEE Photonics Journal, 12, 1-9(2020).
[60] Tang F, Shang Q, Yang S, et al. Generation of photonic hooks from patchy microcylinders[J]. Photonics, 8, 466(2021).
[61] Maslov A V, Astratov V N. Imaging of sub-wavelength structures radiating coherently near microspheres[J]. Applied Physics Letters, 108, 051104(2016).
[62] Maslov A V, Astratov V N. Optical nanoscopy with contact Mie-particles: Resolution analysis[J]. Applied Physics Letters, 110, 261107(2017).
[63] Maslov A V, Astratov V N. Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets[J]. Physical Review Applied, 11, 064004(2019).
[64] Yu L Y, Cyue Z R, Su G D J. Three-stage full-wave simulation architecture for in-depth analysis of microspheres in microscopy[J]. Optics Express, 28, 8862-8877(2020).
[65] [65] Hopkins H H. On the diffraction they of optical images[C]Proceedings of the Royal Society of London Series A, 1953, 217(1130): 408–432.
[66] [66] Astratov V. LabelFree SuperResolution Microscopy[M]. Berlin: Springer, 2019.
[67] Kim M K. Principles and techniques of digital holographic microscopy[J]. SPIE Reviews, 1, 018005(2010).
[68] Zuo C, Li J, Sun J, et al. Transport of intensity equation: A tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).
[69] Fan Y, Li J, Lu L, et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX, 2, 19(2021).
[70] Wu Y, Shroff H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging[J]. Nature Methods, 15, 1011-1019(2018).
Get Citation
Copy Citation Text
Ran Ye, Chu Xu, Fen Tang, Qingqing Shang, Yao Fan, Jiaji Li, Yonghong Ye, Chao Zuo. Simulation of the near-field focusing and the far-field imaging of microspherical lenses: A review[J]. Infrared and Laser Engineering, 2022, 51(2): 20220086
Category: Special issue-Computational optical imaging technology
Received: Feb. 7, 2022
Accepted: --
Published Online: Mar. 21, 2022
The Author Email: Chao Zuo (ran.ye@njnu.edu.cn)