Journal of Inorganic Materials, Volume. 35, Issue 5, 525(2020)
[6] ISHIKAWA T. Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J]. Composites Science & Technology, 51, 135-144(1994).
[7] YAMAMURA T, ISHIKAWA T, SHIBUYA M et al. Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor[J]. Journal of Materials Science, 23, 2589-2594(1988).
[9] SHIBUYA M, YAMAMURA T. Characteristics of a continuous Si-Ti-C-O fibre with low oxygen content using an organometallic polymer precursor[J]. Journal of Materials Science, 31, 3231-3235(1996).
[11] TAKEDA M, IMAI Y, ICHIKAWA H et al. Thermal stability of SiC fiber prepared by an irradiation-curing process[J]. Composites Science & Technology, 59, 793-799(1999).
[12] CHOLLON G, PAILLER R, NASLAIN R et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon)[J]. Journal of Materials Science, 32, 327-347(1997).
[13] CHEN D R, HAN W J, LI S W et al. Fabrication, microstructure, properties and applications of continuous ceramic fibers: a review of present status and further directions[J]. Advanced Ceramics, 39, 151-222(2018).
[17] ZU M, ZOU S M, HAN S et al. Effects of heat treatment on the microstructures and properties of KD-I SiC fibres[J]. Materials Research Innovations, 19, 437-441(2015).
[18] BAI W C, JIAN K. The microstructure and elctrical resistivity of near-stoichiometric SiC fiber[J]. IOP Conf. Series: Materials Science and Engineering, 490, 22057-22065(2019).
[21] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200 ℃[J]. Nature, 391, 773-775(1998).
[22] TAKEDA M, SAKAMOTO J, IMAI Y et al. Properties of Stoichiometric Silicon Carbide Fiber Derived from Polycarbosilane[C]. Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials - A: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 133-141(1994).
[23] YUN H M, DICARLO J A, BHATT R T et al. Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components[C]. 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites-B: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 247-253(2008).
[24] ISHIKAWA T, KAJII S, HISAYUKI T et al. New type of SiC- sintered fiber and its composite material[J]. Key Engineering Materials, 164, 283-290(2008).
[25] ISHIKAWA T. Advances in inorganic fibers[J]. Polymeric and Inorganic Fibers, 178, 109-144(2005).
[29] ICHIKAWA H. Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S[J]. Annales de Chimie-Sciences des Materiaux, 25, 523-528(2000).
[33] YUN H M, DICARLO J A. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers[C]. 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and structures: A: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S.(1999).
[39] HILLIG W B. Making ceramic composites by melt infiltration[J]. American Ceramic Society Bulletin, 73, 56-62(1994).
[40] MORSCHER G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science & Technology, 64, 1311-1319(2004).
[41] MORSCHER G N, REJI J, LARRY Z et al. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites[J]. Composites Science & Technology,, 71, 52-59(2011).
[46] WANG J, LIAN Y L, HAN X F. Research and application of polyimide composites for aeroengine[J]. Aeronautical Manufacturing Technology(2017).
[47] HINOKI T, SNEAD L L, KATOH Y et al. The effect of high dose/high temperature irradiation on high purity fibers and their silicon carbide composites[J]. Journal of Nuclear Materials, 307, 1157-1162(2008).
[49] NEWSOME G A. The effect of neutron irradiation on silicon carbide fibers[J]. John Wiley & Sons, Inc., 579-583(1997).
[51] EHRLICH K. Materials research towards a fusion reactor[J]. Fusion Engineering & Design, 56, 71-82(2001).
[52] NOZAWA T, HINOKI T, HASEGAWA A et al. Recent advances and issues in development of silicon carbide composites for fusion applications[J]. Journal of Nuclear Materials, 41, 622-627(2010).
[55] JONES R H, GIANCARLI L, HASEGAWA A et al. Promise and challenges of SiCf/SiC composites for fusion energy applications[J]. Journal of Nuclear Materials, 307, 1057-1072(2002).
[56] UEDA S, NISHIO S, SEKI Y et al. A fusion power reactor concept using SiC/SiC composites[J]. Journal of Nuclear Materials, s258- 263, 1589-1593(1998).
[57] SNEAD L L, JONES R H, KOHYAMA A et al. Status of silicon carbide composites for fusion[J]. Journal of Nuclear Materials, s233- 237, 26-36(1996).
[58] HASEGAWA A, KOHYAMA A, JONES R H et al. Critical issues and current status of SiCf/SiC composites for fusion[J]. Journal of Nuclear Materials, s, 128-137(2000).
[61] YAMADA R, IGAWA N, TAGUCHI T. Thermal diffusivity/conductivity of Tyranno SA fiber- and Hi-Nicalon type S fiber-reinforced 3-D SiC/SiC composites[J]. Journal of Nuclear Materials, 329, 497-501(2004).
[62] NISHIO S, UEDA S, KURIHARA R et al. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance[J]. Fusion Engineering & Design, 48, 271-279(2000).
[64] NORAJITRA P, BUHLER L, FISCHER U et al. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators[J]. Fusion Engineering & Design, s, 629-634(2001).
[66] PUMA A L, GIANCARLI L, GOLFIER H et al. Potential performances of a divertor concept based on liquid metal cooled SiCf/SiC structures[J]. Fusion Engineering & Design, s66- 68, 401-405(2003).
[67] SATORI K, KISHIMOTO H, PARK J S et al. Thermal insulator of porous SiC/SiC composites for fusion blanket system[J]. Materials Science and Engineering Conference Series, 2150-2159(2011).
Get Citation
Copy Citation Text
Pengren WANG, Yanzi GOU, Hao WANG.
Category: REVIEW
Received: Jun. 20, 2019
Accepted: --
Published Online: Mar. 1, 2021
The Author Email: Yanzi GOU (y.gou2012@hotmail.com)