Optical Technique, Volume. 49, Issue 4, 407(2023)

Improved fringe signal-to-noise ratio of hologram based on AU-Net

WANG Shou1, PEI Ruijing1, WANG Huaying1,2, MEN Gaofu1,2, and WANG Xue1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(17)

    [1] [1] Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Networks,2015,61:85-117.

    [2] [2] Rahimzadeh M, Attar A. Detecting and counting pistachios based on deep learning[J]. Iran Journal of Computer Science,2021(4):23-40.

    [3] [3] Alzubaidil L, Zhang J, Hunaidi A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of Big Data,2021,8(1):53-60.

    [4] [4] Zhang G, Tian G, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express,2018,26(15):19388-19400.

    [5] [5] Huang L, Liu T, Yang X, et al. Holographic image reconstruction with phase recovery and auto focusing using recurrent neural networks[J]. ASC Photonics,2021,8(6):1763-1774.

    [7] [7] Huang L, Yan L, Chen B. Phase restoration of digital holographic microscopy with an adaptive reliability mask for phase unwrapping in microstructure testing[J]. Optics and Lasers in Engineering,2021,138:106416.

    [10] [10] Marim M M, Angelini E, Olivo-Marin J C, et al. Off-axis compressed holographic microscopy in low-light conditions[J]. Optics Letters,2011,36(1):79-81.

    [11] [11] Aurelien, B, Nicolas, et al. A practical inverse-problem approach to digital holographic reconstruction[J]. Optics Express,2013,21(3):3417-3500.

    [12] [12] Fournier C, Jolivet F, Denis L, et al. Pixel super-resolution in digital holography by regularized reconstruction[J]. Applied Optics,2016.56(1):69-85.

    [13] [13] Saowapak, Sotthivirat, Jeffrey, et al. Penalized-likelihood image reconstruction for digital holography[J]. Journal of the Optical Society of America A,2004,21(5):737-750.

    [14] [14] Rivenson Y, Gorocs Z, Gunaydin H, et al. Deep Learning Microscopy[J]. Optica,2017,4(11):1437-1443.

    [15] [15] Wang H D, Yair, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods,2018,16(1):103-110.

    [16] [16] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology,2018,36(5):460-468.

    [17] [17] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica,2018,5(4):458-463.

    [18] [18] Liu T R, Kevin, et al. Deep learning-based super-resolution in coherent imaging systems[J]. Scientific Reports,2019.9(1):1-13.

    [19] [19] Ren Z, So K H, Lam E Y. Fringe pattern improvement and super-resolution using deep learning in digital holography[J]. IEEE Transactions on Industrial Informatics,2019,15(11):6179-6186.

    Tools

    Get Citation

    Copy Citation Text

    WANG Shou, PEI Ruijing, WANG Huaying, MEN Gaofu, WANG Xue. Improved fringe signal-to-noise ratio of hologram based on AU-Net[J]. Optical Technique, 2023, 49(4): 407

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 22, 2022

    Accepted: --

    Published Online: Jan. 4, 2024

    The Author Email:

    DOI:

    Topics