Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)

Complete photonic bandgap in silicon nitride slab assisted by effective index difference between polarizations

Can Ma, Jin Hou*, Chunyong Yang, Ming Shi, and Shaoping Chen
Author Affiliations
  • Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center for Intelligent Internet of Things, College of Electronic and Information Engineering, South-Central MinZu University, Wuhan 430074, China
  • show less
    References(37)

    [1] [1] Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944–947 (2003)

    [2] [2] Morita, Y., Tsuji, Y., Hirayama, K.: Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap. IEEE Photonics Technol. Lett. 20(2), 93–95 (2008)

    [3] [3] Guo, H.M., Hong, X.R., Fan, H.R., Fu, R., Liu, X., Li, Y.X., Feng, S., Chen, X., Li, C.B., Wang, Y.Q.: Polarization-independent waveguides based on the complete band gap of the two-dimensional photonic crystal slabs. Laser Phys. 29(4), 046205 (2019)

    [4] [4] Turduev, M., Giden, I.H., Kurt, H.: Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs. J. Opt. Soc. Am. B Opt. Phys. 29(7), 1589–1598 (2012)

    [5] [5] Tsuji, Y., Morita, Y., Hirayama, K.: Photonic crystal waveguide based on 2-D photonic crystal with absolute photonic band gap. IEEE Photonics Technol. Lett. 18(22), 2410–2412 (2006)

    [6] [6] Kalra, Y., Sinha, R.K.: Design of ultra compact polarization splitter based on the complete photonic band gap. Opt. Quant. Electron. 37(9), 889–895 (2005)

    [7] [7] Wen, F., David, S., Checoury, X., El Kurdi, M., Boucaud, P.: Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations. Opt. Express 16(16), 12278–12289 (2008)

    [8] [8] Bayer, C., Straub, M.: Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap. Appl. Opt. 48(27), 5050–5054 (2009)

    [9] [9] Wu, H., Citrin, D.S., Jiang, L., Li, X.: Polarization-independent single-mode waveguiding with honeycomb photonic crystals. IEEE Photonics Technol. Lett. 27(8), 840–843 (2015)

    [10] [10] Jalali, B.: Nonlinear optics in the mid-infrared. Nat. Photonics 4(8), 506–508 (2010)

    [11] [11] Tan, D.T.H., Ooi, K.J.A., Ng, D.K.T.: Nonlinear optics on siliconrich nitride—a high nonlinear figure of merit CMOS platform. Photonics Res. 6(5), B50 (2018)

    [12] [12] Moss, D.J., Morandotti, R., Gaeta, A.L., Lipson, M.: New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7(8), 597–607 (2013)

    [13] [13] Matsushita, S., Suavet, O., Hashiba, H.: Full-photonic-bandgap structures for prospective dye-sensitized solar cells. Electrochim. Acta 55(7), 2398–2403 (2010)

    [14] [14] Matsushita, S., Matsutani, A., Morii, Y., Kobayashi, D., Nishioka, K., Shoji, D., Sato, M., Tatsuma, T., Sannomiya, T., Isobe, T., Nakajima, A.: Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid. J. Mater. Sci. 51(2), 1066–1073 (2016)

    [15] [15] Spurny, M., O’Faolain, L., Bulla, D.A.P., Luther-Davies, B., Krauss, T.F.: Fabrication of low loss dispersion engineered chalcogenide photonic crystals. Opt. Express 19(3), 1991–1996 (2011)

    [16] [16] Suzuki, K., Baba, T.: Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides. Opt. Express 18(25), 26675–26685 (2010)

    [17] [17] Grillet, C., Smith, C., Freeman, D., Madden, S., Luther-Davies, B., Magi, E., Moss, D., Eggleton, B.: Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Opt. Express 14(3), 1070–1078 (2006)

    [18] [18] Cerjan, A., Fan, S.H.: Complete photonic band gaps in supercell photonic crystals. Phys. Rev. A 96(5), 051802 (2017)

    [19] [19] Rahim, A., Ryckeboer, E., Subramanian, A.Z., Clemmen, S., Kuyken, B., Dhakal, A., Raza, A., Hermans, A., Muneeb, M., Dhoore, S., Li, Y., Dave, U., Bienstman, P., Le Thomas, N., Roelkens, G., Van Thourhout, D., Helin, P., Severi, S., Rottenberg, X., Baets, R.: Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 35(4), 639–649 (2017)

    [20] [20] Lacava, C., Stankovic, S., Khokhar, A.Z., Bucio, T.D., Gardes, F.Y., Reed, G.T., Richardson, D.J., Petropoulos, P.: Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep. 7(1), 22 (2017)

    [21] [21] Ooi, K.J., Ng, D.K., Wang, T., Chee, A.K., Ng, S.K., Wang, Q., Ang, L.K., Agarwal, A.M., Kimerling, L.C., Tan, D.T.: Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 8, 13878 (2017)

    [22] [22] Kawano, K.K.T.: Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger Equation. Wiley, Hoboken (2002)

    [23] [23] Qiu, M.: Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81(7), 1163–1165 (2002)

    [24] [24] Qiu, M., Azizi, K., Karlsson, A., Swillo, M., Jaskorzynska, B.: Numerical studies of mode gaps and coupling efficiency for linedefect waveguides in two-dimensional photonic crystals. Phys. Rev. B 64(15), 155113 (2001)

    [25] [25] Hou, J., Citrin, D.S., Cao, Z., Yang, C., Zhong, Z., Chen, S.: Slow light in square-lattice chalcogenide photonic crystal holey fibers. IEEE J. Sel. Top. Quantum Electron. 22(2), 271–278 (2016)

    [26] [26] Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001)

    [27] [27] Rezaei, B., Fathollahi Khalkhali, T., Soltani Vala, A., Kalafi, M.: Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background. Opt. Commun. 282(14), 2861–2869 (2009)

    [28] [28] Proietti Zaccaria, R., Verma, P., Kawaguchi, S., Shoji, S., Kawata, S.: Manipulating full photonic band gaps in two dimensional birefringent photonic crystals. Opt. Express 16(19), 14812–14820 (2008)

    [29] [29] Chau, Y.F., Wu, F.L., Jiang, Z.H., Li, H.Y.: Evolution of the complete photonic bandgap of two-dimensional photonic crystal. Opt. Express 19(6), 4862–4867 (2011)

    [30] [30] Giden, I.H., Kurt, H.: Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering. Appl. Opt. 51(9), 1287–1296 (2012)

    [31] [31] Ma, T.X., Wang, Y.S., Zhang, C.: Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins. Opt. Commun. 312, 68–72 (2014)

    [32] [32] Shi, P., Huang, K., Li, Y.: Photonic crystal with complex unit cell for large complete band gap. Opt. Commun. 285(13–14), 3128–3132 (2012)

    [33] [33] Wang, Y.F., Wang, Y.S., Su, X.X.: Large bandgaps of two-dimensional phononic crystals with cross-like holes. J. Appl. Phys. 110(11), 113520 (2011)

    [34] [34] Luke, K., Dutt, A., Poitras, C.B., Lipson, M.: Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21(19), 22829–22833 (2013)

    [35] [35] Tan, D.T.H., Ikeda, K., Sun, P.C., Fainman, Y.: Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 96(6), 061101 (2010)

    [36] [36] Joannopoulos, J.D., Winn, J.N., Meade, R.D.: Photonic Crystal Molding the Flow of Light, 2nd edn. Princeton University, New Jersey (2008)

    [37] [37] Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)

    Tools

    Get Citation

    Copy Citation Text

    Can Ma, Jin Hou, Chunyong Yang, Ming Shi, Shaoping Chen. Complete photonic bandgap in silicon nitride slab assisted by effective index difference between polarizations[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Jun. 21, 2021

    Accepted: Sep. 7, 2021

    Published Online: Jan. 18, 2023

    The Author Email: Jin Hou (houjin@mail.scuec.edu.cn)

    DOI:10.1007/s12200-022-00023-6

    Topics