International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 25503(2025)
Modular scaffolds with intelligent visual guidance system for in situ bone tissue repair
[1] [1] Zhao W X, Hu C X and Xu T 2023In vivobioprinting: broadening the therapeutic horizon for tissue injuriesBioact. Mater.25201–22
[2] [2] Rhee P, Joseph B, Pandit V, Aziz H, Vercruysse G, Kulvatunyou N and Friese R S 2014 Increasing trauma deaths in the United StatesAnn. Surg.26013–21
[3] [3] Zeitouni S, Krause U, Clough B H, Halderman H, Falster A, Blalock D T, Chaput C D, Sampson H W and Gregory C A 2012 Human mesenchymal stem cell-derived matrices for enhanced osteoregenerationSci. Transl. Med.4132ra155
[4] [4] Rossaint Ret al2023 The European guideline on management of major bleeding and coagulopathy following trauma: sixth editionCrit. Care2780
[5] [5] Badhiwala J H, Wilson J R, Witiw C D, Harrop J S, Vaccaro A R, Aarabi B, Grossman R G, Geisler F H and Fehlings M G 2021 The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient dataLancet Neurol.20117–26
[6] [6] Kotwal R S, Howard J T, Orman J A, Tarpey B W, Bailey J A, Champion H R, Mabry R L, Holcomb J B and Gross K R 2016 The effect of a golden hour policy on the morbidity and mortality of combat casualtiesJAMA Surg.15115–24
[7] [7] Rasmussen T E 2016 The power of advanced capability and informed policyJAMA Surg.15125
[8] [8] Nasser A A H, Nederpelt C, El Hechi M, Mendoza A, Saillant N, Fagenholz P, Velmahos G and Kaafarani H M A 2020 Every minute counts: the impact of pre-hospital response time and scene time on mortality of penetrating trauma patientsAm. J. Surg.220240–4
[9] [9] Jakus A Eet al2016 Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterialSci. Transl. Med.8358ra127
[10] [10] Murphy S V, De Coppi P and Atala A 2019 Opportunities and challenges of translational 3D bioprintingNat. Biomed. Eng.4370–80
[11] [11] Van Eyk J E and Sobhani K 2018 Precision medicine: establishing proteomic assessment criteria from discovery to clinical diagnosticsCirculation1382172–4
[12] [12] Xie M J, Shi Y, Zhang C, Ge M J, Zhang J B, Chen Z C, Fu J Z, Xie Z J and He Y 2022 In situ 3D bioprinting with bioconcrete bioinkNat. Commun.133597
[13] [13] Urciuolo Aet al2020 Intravital three-dimensional bioprintingNat. Biomed. Eng.4901–15
[14] [14] Chen Y Wet al2020 Noninvasive in vivo 3D bioprintingSci. Adv.6eaba7406
[15] [15] Liu W J, Huan Z G, Wu C T, Zhou Z H and Chang J 2022 High-strength calcium silicate-incorporated magnesium phosphate bone cement with osteogenic potential for orthopedic applicationCompositesB247110324
[16] [16] Xu H H K, Wang P, Wang L, Bao C Y, Chen Q M, Weir M D, Chow L C, Zhao L, Zhou X D and Reynolds M A 2017 Calcium phosphate cements for bone engineering and their biological propertiesBone Res.517056
[17] [17] Cho R Y, Byun S H, Park S Y, On S W, Kim J C and Yang B E 2023 Patient-specific plates for facial fracture surgery: a retrospective case seriesJ. Dent.137104650
[18] [18] Frassica M T, Demott C J, Ramirez E M and Grunlan M A 2020 Spatially controlled templated hydrogels for orthopedic interfacial tissue regenerationACS Macro Lett.91740–4
[19] [19] Jia Z J, Xu X X, Zhu D H and Zheng Y F 2023 Design, printing, and engineering of regenerative biomaterials for personalized bone healthcareProg. Mater. Sci.134101072
[20] [20] Lu Y H, Chen X, Han F, Zhao Q, Xie T, Wu J J and Zhang Y H 2023 3D printing of self-healing personalized liver models for surgical training and preoperative planningNat. Commun.148447
[21] [21] Wu J J, Guo J, Linghu C H, Lu Y H, Song J Z, Xie T and Zhao Q 2021 Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interfaceNat. Commun.126070
[22] [22] Shikinami Y, Okazaki K, Saito M, Okuno M, Hasegawa S, Tamura J, Fujibayashi S and Nakamura T 2006 Bioactive and bioresorbable cellular cubic-composite scaffolds for use in bone reconstructionJ. R. Soc. Interface3805–21
[23] [23] Shi Yet al2023 A hierarchical 3D graft printed with nanoink for functional craniofacial bone restorationAdv. Funct. Mater.332301099
[24] [24] Song J, Lv B, Chen W, Ding P and He Y 2023 Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repairInt. J. Extreme Manuf.5032008
[25] [25] Chen Yet al2024 3D printed grafts with gradient structures for organized vascular regenerationInt. J. Extreme Manuf.6035503
[26] [26] Li Y R, Xie M J, Lv S, Sun Y, Li Z, Gu Z M and He Y 2023 A bionic controllable strain membrane for cell stretching at air-liquid interface inspired by papercuttingInt. J. Extreme Manuf.5045502
[27] [27] Du R X, Su Y X, Yan Y, Choi W S, Yang W F, Zhang C Y, Chen X S, Curtin J P, Ouyang J L and Zhang B T 2020 A systematic approach for making 3D-printed patient-specific implants for craniomaxillofacial reconstructionEngineering61291–301
[28] [28] Tumbleston J Ret al2015 Continuous liquid interface production of 3D objectsScience3471349–52
[29] [29] Shao H Fet al2017 Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defectBiofabrication9025003
[30] [30] Lin E, Li Y N, Ortiz C and Boyce M C 2014 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behaviorJ. Mech. Phys. Solids73166–82
[31] [31] Liu Q, Tan D, Meng F D, Yang B S, Shi Z K, Wang X, Li Q, Nie C, Liu S and Xue L J 2021 Adhesion enhancement of micropillar array by combining the adhesive design from gecko and tree frogSmall172005493
[32] [32] Jung Y H, An J, Hyeon D Y, Wang H S, Kim I, Jeong C K, Park K I, Lee P S and Lee K J 2024 Theoretical basis of biomimetic flexible piezoelectric acoustic sensors for future customized auditory systemsAdv. Funct. Mater.342309316
[33] [33] Chen W Zet al2024 Harmonizing thickness and permeability in bone tissue engineering: a novel silk fibroin membrane inspired by spider silk dynamicsAdv. Mater.362310697
[34] [34] Siebert Let al2021 Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffoldAdv. Funct. Mater.312007555
[35] [35] Zhu Y, Yang Q, Yang M G, Zhan X H, Lan F, He J, Gu Z W and Wu Y 2017 Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathwayACS Nano113690–704
[36] [36] Johnson G L and Lapadat R 2002 Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinasesScience2981911–2
[37] [37] Yang Y Het al2022 Gaussian curvature–driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffoldsProc. Natl Acad. Sci. USA119e2206684119
[38] [38] Zeke A, Misheva M, Remnyi A and Bogoyevitch M A 2016 JNK signaling: regulation and functions based on complex protein-protein partnershipsMicrobiol. Mol. Biol. Rev.80793–835
[39] [39] Pan S S, Yin J H, Yu L D, Zhang C Q, Zhu Y F, Gao Y S and Chen Y 2020 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstructionAdv. Sci.71901511
[40] [40] Ricles L M, Coburn J C, Di Prima M and Oh S S 2018 Regulating 3D-printed medical productsSci. Transl. Med.10eaan6521
[41] [41] Bliley J M, Shiwarski D J and Feinberg A W 2022 3D-bioprinted human tissue and the path toward clinical translationSci. Transl. Med.14eabo7047
[42] [42] Ying B D, Wang H, Yu Z H, Xu X Y, Liu X N, Liu S B, Zeng D P, Li R Y and Qin Y G 2023 Rapid batch surface modification of 3D-printed high-strength polymer scaffolds for enhanced bone regenerationIn vitroand in vivoSurf. Interfaces43103588
[43] [43] Pobloth A Met al2018 Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheepSci. Transl. Med.10eaam8828
[44] [44] Yu X P, Ma H S, Wang Y F, Hao J X, Chen L, Gelinsky M and Wu C T 2024 Assembled/disassembled modular scaffolds for multicellular tissue engineeringAdv. Mater.362308126
[45] [45] Lee H, Lee M K, Han G, Kim H E, Song J H, Na Y, Yoon C B, Oh S, Jang T S and Jung H D 2022 Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’Bio-Des. Manuf.5451–64
[46] [46] Lee H, Lee M K, Cheon K H, Kang I G, Park C, Jang T S, Han G, Kim H E, Song J H and Jung H D 2021 Functionally assembled metal platform as lego-like module system for enhanced mechanical tunability and biomolecules deliveryMater. Des.207109840
[47] [47] Park S R, Kook M G, Kim S R, Lee J W, Park C H, Oh B C, Jung Y and Hong I S 2023 Development of cell-laden multimodular Lego-like customizable endometrial tissue assembly for successful tissue regenerationBiomater. Res.2733
[48] [48] Van Der Heide D, Hatt L P, Wirth S, Pirera M E, Armiento A R and Stoddart M J 2024In vitroosteogenesis of hMSCs on collagen membranes embedded within LEGO®-inspired 3D printed PCL constructs for mandibular bone repairBiofabrication16045020
[49] [49] Lee S S, Du X Y, Smit T, Bissacco E G, Seiler D, De Wild M and Ferguson S J 2023 3D-printed LEGO®-inspired titanium scaffolds for patient-specific regenerative medicineBiomater. Adv.154213617
[50] [50] Liu Aet al2016 The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defectsJ. Mater. Chem.B43945–58
[51] [51] Zhou C, Wang X, Chen R and Zhang Q X 2022 Research on trapezoidal shape optimization of laser remanufacturing heterogeneous interface under fatigue loadInt. J. Fatigue157106715
[52] [52] Xu M T, Li C Y, Yao G, Zhang Y M and Gao Y 2022 Load-dependent stiffness model and experimental validation of four-station rotary tool holderMech. Syst. Signal Process.171108868
[53] [53] Zhang Y Fet al2016 Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in ratsNat. Med.221160–9
[54] [54] Chen Q Z and Thouas G A 2015 Metallic implant biomaterialsMater. Sci. Eng.R871–57
Get Citation
Copy Citation Text
Shao Huifeng, Xia Pengcheng, Zhang Tao, Shi Jinyuan, Huang Zhiqiang, Yuan Xianqi, Nian Zhiheng, Zhao Xiao, Zhou Rougang, Gong Youping, He Yong. Modular scaffolds with intelligent visual guidance system for in situ bone tissue repair[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 25503
Category:
Received: Jul. 22, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: