NUCLEAR TECHNIQUES, Volume. 47, Issue 9, 090602(2024)

Development and validation of a thermal-hydraulic analysis code for dual cooled assemblies in molten salt reactors

Siqin HU1,2, Chong ZHOU1,2、*, Guifeng ZHU1,2, Yang ZOU1,2, Xiaohan YU1,2, and Shuaiyu XUE1,2
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(19)
    Hollow hexagonal assembly (a) and dual cooled assembly (b)
    Actual model (a) and equivalent model (b) of the dual cooled assembly
    Axial normalized power distribution of fuel salt and graphite
    Schematic of heat transfer in a dual cooled component (a) Dual cooling, (b) External channel fuel salt heating graphite, (c) Inner channel fuel salt heating graphite (color online)
    Schematic of the control volume division
    Calculation flow of the THDA-MSR
    Geometry model (a) and mesh generation (b)
    Molten salt temperature distribution of the internal and external channel
    Curves of maximum outlet temperature of fuel salt varying with the level of various factors
    (a) Temperature distribution at the hottest section of graphite, (b) graphite normalized radial temperature distribution of the CFD model
    Graphite normalized radial temperature distribution on the hottest section
    Maximum temperature of graphite varying with the level of each factor
    (a) Molten salt temperature distribution, (b) graphite normalized radial temperature distribution
    • Table 1. Orthogonal design of single component parameters

      View table
      View in Article

      Table 1. Orthogonal design of single component parameters

      工况

      Case

      A组件对边距

      Substacne of component / cm

      B熔盐体积占比

      Fuel salt volume fraction

      C外通道熔盐体积占比

      External fuel volume fraction

      1 (A1B1C1)1 (16 cm)1 (14%)1 (40%)
      2 (A1B2C3)1 (16 cm)2 (16%)3 (80%)
      3 (A1B3C2)1 (16 cm)3 (18%)2 (60%)
      4 (A2B1C3)2 (18 cm)1 (14%)3 (80%)
      5 (A2B2C2)2 (18 cm)2 (16%)2 (60%)
      6 (A2B3C1)2 (18 cm)3 (18%)1 (40%)
      7 (A3B1C2)3 (20 cm)1 (14%)2 (60%)
      8 (A3B2C1)3 (20 cm)2 (16%)1 (40%)
      9 (A3B3C3)3 (20 cm)3 (18%)3 (80%)
    • Table 2. Grid independence analysis

      View table
      View in Article

      Table 2. Grid independence analysis

      CFD模型网格划分

      Meshing scheme of CFD model

      THDA-MSR轴向网格划分

      Axial meshing scheme of THDA-MSR

      方案

      Scheme

      网格量

      Mesh number / W

      石墨温度热点

      Maximum temperature of

      graphite / ℃

      方案

      Scheme

      划分层数

      Number of layers

      石墨温度热点

      Maximum temperature

      of graphite / ℃

      128747.8120746.8
      242747.2240746.1
      380746.7380745.6
      4102746.64120745.6
    • Table 3. Property parameters of the fuel salt and graphite

      View table
      View in Article

      Table 3. Property parameters of the fuel salt and graphite

      参数

      Parameters

      燃料盐

      Fuel salt

      石墨

      Graphite

      类型TypeLiF-BeF2-ZrF4-UF4-ThF4IG-110
      密度Density / kg·m-32 757.9-0.464 54×T(K)1 783
      比热容Specific heat / J·kg-1·K-12 3861 700
      热导率Heat conductivity / W·m-1·K-11.465
      黏度Viscosity / kg·(m·s) -10.003 6 exp(7 043.24/(T(K)+273))
    • Table 4. Results of the flow distribution and pressure drop

      View table
      View in Article

      Table 4. Results of the flow distribution and pressure drop

      工况

      Case

      THDA-MSRFluent

      内外通道流量分配比

      Flow distribution ratio

      压损

      Pressure / Pa

      内通道压损

      Inner channel pressure / Pa

      外通道压损

      External channel pressure / Pa

      1 (A1B1C1)4.7416 3376 180(2.48%)6 234(1.63%)
      2 (A1B2C3)1.2988 9288 556(4.16%)8 988(-0.68%)
      3 (A1B3C2)0.2967 0726 879.6(2.72%)7 101(-0.41%)
      4 (A2B1C3)4.7419 0008 641(3.98%)9 075(-0.84%)
      5 (A2B2C2)1.2986 8016 689(1.64%)6 748(0.78%)
      6 (A2B3C1)0.2964 4764 522(1.02%)4 394(1.84%)
      7 (A3B1C2)4.7416 7356 602(1.97%)6 768(0.49%)
      8 (A3B2C1)1.2984 2774 320(1.00%)4 206(1.67%)
      9 (A3B3C3)0.2965 8075 683(2.13%)5 928(-2.09%)
    • Table 5. Results of the maximum temperature of graphite

      View table
      View in Article

      Table 5. Results of the maximum temperature of graphite

      工况

      Case

      THDA-MSR

      / ℃

      Fluent

      / ℃

      绝对偏差

      Absolute deviation / ℃

      相对偏差

      Relative deviation / %

      1 (A1B1C1)745.6746.7-1.1-0.15
      2 (A1B2C3)715.8716.5-0.7-0.09
      3 (A1B3C2)720.0720.5-0.5-0.07
      4 (A2B1C3)718.1718.6-0.5-0.07
      5 (A2B2C2)723.3723.9-0.6-0.08
      6 (A2B3C1)743.6744.0-0.4-0.05
      7 (A3B1C2)726.2726.6-0.4-0.06
      8 (A3B2C1)747.8748.0-0.2-0.03
      9 (A3B3C3)732.6733.2-0.6-0.09
    • Table 6. Structure parameter of the components

      View table
      View in Article

      Table 6. Structure parameter of the components

      参数

      Parameters

      传统中心开孔组件

      Hollow hexagonal assembly

      新型双面冷却组件

      Dual cooled assembly

      组件对边距Substacne of component / cm1818
      熔盐体积占比Fuel salt volume fraction0.10.1
      外通道熔盐体积占比External fuel volume fraction0.9
      内通道直径Diameter of inner channel / mm6019
      外通道宽度Width of external channel / mm8.3
    Tools

    Get Citation

    Copy Citation Text

    Siqin HU, Chong ZHOU, Guifeng ZHU, Yang ZOU, Xiaohan YU, Shuaiyu XUE. Development and validation of a thermal-hydraulic analysis code for dual cooled assemblies in molten salt reactors[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR ENERGY SCIENCE AND ENGINEERING

    Received: Nov. 16, 2023

    Accepted: --

    Published Online: Nov. 13, 2024

    The Author Email:

    DOI:10.11889/j.0253-3219.2024.hjs.47.090602

    Topics