Journal of Applied Optics, Volume. 45, Issue 4, 759(2024)

Image segmentation method for metal coating peeling and corrosion based on improved U2-Net network

Yunfeng NI1, Qingting QI1, Daixian ZHU1、*, Qiang QIU1, and Shulin LIU2
Author Affiliations
  • 1College of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • 2College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • show less
    References(23)

    [1] HARSIMRAN S, SANTOSH K, RAKESH K. Overview of corrosion and its control: a critical review[J]. Progress in Engineering Science, 3, 13-24(2021).

    [2] VOEOBEL R, IVASENKO I, BEREHULYAK O et al. Segmentation of rust defects on painted steel surfaces by intelligent image analysis[J]. Automation in Construction, 123, 103515(2021).

    [3] YANG Jihua, YANG Hua, JIA Weiding et al. Adaptive enhancement method for LiDAR images based on multiscale retinex[J]. Laser Journal, 44, 192-197(2023).

    [5] HUANG Z, WANG X, HUANG L et al. Ccnet: criss-cross attention for semantic segmentation[C], 603-612(2019).

    [7] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C], 1251-1258(2017).

    [8] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C], 6105-6114(2019).

    [9] WU Y, SHEN X, BU F et al. Ultrasound image segmentation method for thyroid nodules using ASPP fusion features[J]. IEEE Access, 8, 172457-172466(2020).

    [10] CHEN L C, PAPANDREOU G, KOKKINOS I et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2017).

    [13] WOO S, PARK J, LEE J Y et al. Cbam: convolutional block attention module[J]. Proceedings of the European Conference on Computer Vision, 11211, 3-19(2018).

    [14] LI Cuiyun, BAI Jing, ZHENG Liang. Medical image segmentation based on the fusion of edge enhancement attention mechanism and U-Net network[J]. Journal of Graphics, 43, 273-278(2022).

    [15] QIN X, ZHANG Z, HUANG C et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 106, 107404(2020).

    [16] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).

    [17] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C], 385-400(2018).

    [19] SZEGEDY C, VANHOUCKE V, IOFFE S et al. Rethinking the inception architecture for computer vision[C], 2818-2826(2016).

    [20] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2980-2988(2017).

    [21] SALEHI S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C], 379-387(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yunfeng NI, Qingting QI, Daixian ZHU, Qiang QIU, Shulin LIU. Image segmentation method for metal coating peeling and corrosion based on improved U2-Net network[J]. Journal of Applied Optics, 2024, 45(4): 759

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 21, 2023

    Accepted: --

    Published Online: Oct. 21, 2024

    The Author Email: Daixian ZHU (朱代先)

    DOI:10.5768/JAO202445.0402005

    Topics