High Power Laser and Particle Beams, Volume. 35, Issue 6, 065005(2023)

Correction method for pulse energy density of compression plasma flows

Miao Qu1,2 and Sha Yan2、*
Author Affiliations
  • 1China Institute of Nuclear Industry Strategy, Beijing 100048, China
  • 2Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
  • show less
    Figures & Tables(16)
    Compact magnetoplasma compressor and compression plasma flow
    Surface morphology of tungsten under CPF single pulse irradiation with nominal energy density of 0.3 MJ/m2 (pulse width 0.1 ms)
    Variation of surface temperature with time under different pulse energy densities (pulse width 0.1 ms) calculated by Comsol
    Schematic diagram of energy input and dissipation without boiling and ablation
    Schematic diagram of energy input and dissipation with vaporization or ablation
    Energy density correction method for vaporization process
    Temperature dependence of thermal conductivity of W
    Time dependence of temperature distribution in depth direction of tungsten irradiated by CPF single pulse (pulse width 0.1 ms) with input energy density of 1.2 MJ/m2
    Variation of the calculated surface degeneration with the input energy density
    Variation of mass loss with nominal energy density in experiment
    Degenerative length under different energy densities from Table 2 and Table 3
    Schematic diagram of result evaluation of energy density correction
    • Table 1. Parameters of tungsten materials

      View table
      View in Article

      Table 1. Parameters of tungsten materials

      parametervalue
      specific heat capacity of solid state/(J·kg−1·K−1) 144
      specific heat capacity of liquid state/(J·kg−1·K−1) 200
      solid density/(kg·m−3) 19 350
      liquid density/(kg·m−3) 17 600
      thermal conductivity/(W·m−1·K−1) variation with temperature
      melting point Tm/K 3 683.15
      boiling point Tb/K 5 933.15
      latent Heat LS-L/(kJ·kg−1) 187
      latent Heat LL-G/(kJ·kg−1) 4 009
    • Table 2. Calculated surface degeneration under different input energy densities

      View table
      View in Article

      Table 2. Calculated surface degeneration under different input energy densities

      $ \varepsilon $/(MJ/m2) $ \Delta x $/μm
      0.700.00
      0.750.19
      0.800.58
      0.951.94
      1.002.52
      1.052.94
      1.153.98
      1.204.51
    • Table 3. Surface degeneration corresponding to mass loss in the experiment

      View table
      View in Article

      Table 3. Surface degeneration corresponding to mass loss in the experiment

      $ {\varepsilon _n} $/(MJ/m2) $ \Delta m $/mg $ \Delta x' $/μm
      0.302.801.28
      0.404.452.04
      0.506.102.80
      0.9513.546.20
      1.0014.366.58
      1.0515.196.96
      1.1516.847.72
      1.2017.678.10
    • Table 4. Correction results of nominal average energy densities

      View table
      View in Article

      Table 4. Correction results of nominal average energy densities

      $ {\varepsilon _n} $/(MJ/m2) $ \varepsilon $/(MJ/m2)
      0.30.87
      0.40.95
      0.51.03
      0.951.39
      1.051.46
      1.151.54
      1.201.58
    Tools

    Get Citation

    Copy Citation Text

    Miao Qu, Sha Yan. Correction method for pulse energy density of compression plasma flows[J]. High Power Laser and Particle Beams, 2023, 35(6): 065005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Pulsed Power Technology

    Received: Jun. 1, 2022

    Accepted: Jan. 6, 2023

    Published Online: Jul. 10, 2023

    The Author Email: Yan Sha (syan@pku.edu.cn)

    DOI:10.11884/HPLPB202335.220182

    Topics