Chinese Journal of Lasers, Volume. 47, Issue 2, 207003(2020)
Review of Advances in Ophthalmic Optical Imaging Technologies from Several Mouse Retinal Imaging Methods
[1] Rodieck R W. The vertebrate retina: principles of structure and function[M]. Series of books in biology. Oxford: Freeman., 1044(1973).
[3] Curcio C A, Medeiros N E, Millican C L. Photoreceptor loss in age-related macular degeneration[J]. Investigative Ophthalmology & Visual Science, 37, 1236-1249(1996).
[4] Fong D S, Aiello L, Gardner T W et al. Retinopathy in diabetes[J]. Diabetes Care, 27, S84-S87(2004).
[5] Harwerth R S. Visual field defects and retinal ganglion cell losses in patients with glaucoma[J]. Archives of Ophthalmology, 124, 853-859(2006).
[6] Hartong D T, Berson E L, Dryja T P. Retinitis pigmentosa[J]. The Lancet, 368, 1795-1809(2006).
[7] Bernardes R, Serranho P, Lobo C. Digital ocular fundus imaging: a review[J]. Ophthalmologica, 226, 161-181(2011).
[8] Sharp P F, Manivannan A, Xu H et al. The scanning laser ophthalmoscope: a review of its role in bioscience and medicine[J]. Physics in Medicine and Biology, 49, 1085-1096(2004).
[9] Sheppard C J R, Choudhury A. Image formation in the scanning microscope[J]. Optica Acta: International Journal of Optics, 24, 1051-1073(1977).
[10] Cox G. Sheppard C J R. Practical limits of resolution in confocal and non-linear microscopy[J]. Microscopy Research and Technique, 63, 18-22(2004).
[11] Sakata L M, Deleon-Ortega J, Sakata V et al. Optical coherence tomography of the retina and optic nerve - a review[J]. Clinical & Experimental Ophthalmology, 37, 90-99(2009).
[12] Chader G J. Animal models in research on retinal degenerations: past progress and future hope[J]. Vision Research, 42, 393-399(2002).
[13] Levkovitch-Verbin H. Animal models of optic nerve diseases[J]. Eye, 18, 1066-1074(2004).
[14] Chang B, Hawes N L, Hurd R E et al. Mouse models of ocular diseases[J]. Visual Neuroscience, 22, 587-593(2005).
[15] Won J, Shi L Y, Hicks W et al. Mouse model resources for vision research[J]. Journal of Ophthalmology, 2011, 391384(2011).
[16] Pan F. Defocusedimage changes signaling of ganglion cells in the mouse retina[J]. Cells, 8, 640(2019).
[17] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).
[18] Veleri S, Lazar C H, Chang B et al. Biology and therapy of inherited retinal degenerative disease: insights from mouse models[J]. Disease Models & Mechanisms, 8, 109-129(2015).
[19] Geng Y, Schery L A, Sharma R et al. Optical properties of the mouse eye[J]. Biomedical Optics Express, 2, 717-738(2011).
[20] Geng Y, Dubra A, Yin L et al. Adaptive optics retinal imaging in the living mouse eye[J]. Biomedical Optics Express, 3, 715-734(2012).
[21] He S C, Ye C, Sun Q Q et al. Label-free nonlinear optical imaging of mouse retina[J]. Biomedical Optics Express, 6, 1055-1066(2015).
[23] Zhang P F, Azhar Z, Edward N et al[J]. Evaluation of state-of-the-art imaging systems for
[24] Wahl D J, Ng R, Ju M J et al. Sensorless adaptive optics multimodal en-face small animal retinal imaging[J]. Biomedical Optics Express, 10, 252-267(2019).
[25] Zhang P F, Zam A, Jian Y F et al. In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature[J]. Journal of Biomedical Optics, 20, 126005(2015).
[29] Ikeda W, Nakatani T, Uemura A. Cataract-preventing contact lens for in vivo imaging of mouse retina[J]. BioTechniques, 65, 101-104(2018).
[30] Zhang P F, Mocci J, Wahl D J et al. Effect of a contact lens on mouse retinal in vivo imaging: effective focal length changes and monochromatic aberrations[J]. Experimental Eye Research, 172, 86-93(2018).
[31] Joseph A, Guevara-Torres A, Schallek J. Imaging single-cell blood flow in the smallest to largest vessels in the living retina[J]. eLife, 8, e45077(2019).
[33] de Lestrange-Anginieur E, Jiang X Y, Ren Q S. Optical modelling of a supplementary tunable air-spaced goggle lens for rodent eye imaging[J]. PLoS One, 12, e0181111(2017).
[34] Allen L. Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography[J]. American Journal of Ophthalmology, 57, 13-28(1964).
[35] Behrendt T, Doyle K E. Reliability of image size measurements in the new zeiss fundus camera[J]. American Journal of Ophthalmology, 59, 896-899(1965).
[36] DiLoreto D, Grover D A, del Cerro C et al. A new procedure for fundus photography and fluorescein angiography in small laboratory animal eyes[J]. Current Eye Research, 13, 157-161(1994).
[37] Hawes N L, Smith R S, Chang B et al. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes[J]. Molecular Vision, 5, 22(1999).
[38] Ogg A J. Photography of lens opacities by trans-scleral illumination[J]. British Journal of Ophthalmology, 44, 374-377(1960).
[39] Toslak D, Thapa D, Chen Y J et al. Trans-palpebral illumination: an approach for wide-angle fundus photography without the need for pupil dilation[J]. Optics Letters, 41, 2688-2691(2016).
[40] Webb R H. BME-[J]. Hughes G W. Scanning laser ophthalmoscope. IEEE Transactions on Biomedical Engineering, 28, 488-492(1981).
[41] Webb R H, Hughes G W, Delori F C. Confocal scanning laser ophthalmoscope[J]. Applied Optics, 26, 1492-1499(1987).
[42] Zhang L, Capilla A, Song W Y et al. Oblique scanning laser microscopy for simultaneously volumetric structural and molecular imaging using only one raster scan[J]. Scientific Reports, 7, 8591(2017).
[43] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[44] Drexler W, Morgner U, Kärtner F X et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 24, 1221-1223(1999).
[45] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).
[46] Ha Usler G, Lindner M W. "Coherence radar" and "Spectral radar"- new tools for dermatological diagnosis[J]. Journal of Biomedical Optics, 3, 21-31(1998).
[47] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002).
[48] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).
[49] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 28, 2067-2069(2003).
[50] Choma M. SarunicM V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).
[51] Rollins A M, Kulkarni M D, Yazdanfar S et al. In vivo video rate optical coherence tomography[J]. Optics Express, 3, 219-229(1998).
[52] Potsaid B, Gorczynska I, Srinivasan V J et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70, 000 to 312, 500 axial scans per second[J]. Optics Express, 16, 15149-15169(2008).
[54] Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 14, 11575-11584(2006).
[55] Wei X M. Lau A K S, Xu Y Q, et al. 28 MHz swept source at 10 μm for ultrafast quantitative phase imaging[J]. Biomedical Optics Express, 6, 3855-3864(2015).
[56] Huo T C, Wang C M, Zhang X et al. Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source[J]. Journal of Biomedical Optics, 20, 030503(2015).
[58] Jia Y L, Bailey S T, Hwang T S et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, E2395-E2402(2015).
[59] Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).
[60] Kim D Y, Fingler J, Werner J S et al. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography[J]. Biomedical Optics Express, 2, 1504-1513(2011).
[61] Jia Y L, Morrison J C, Tokayer J et al. Quantitative OCT angiography of optic nerve head blood flow[J]. Biomedical Optics Express, 3, 3127-3137(2012).
[63] Gorczynska I, Migacz J V, Zawadzki R J et al. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid[J]. Biomedical Optics Express, 7, 911-942(2016).
[64] de Carlo T E, Romano A, Waheed N K et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 1, 5(2015).
[65] Spaide R F. Klancnik J M Jr, Cooney M J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmology, 133, 45-50(2015).
[66] Yang S S, Liu K Z, Ding H J et al. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model[J]. Journal of Cerebral Blood Flow & Metabolism, 39, 1381-1393(2019).
[67] Guo L, Shi R, Zhang C et al. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously[J]. Journal of Biomedical Optics, 21, 081202(2016).
[68] Zhang P F, Goswami M, Zam A et al. Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO[J]. Optics Letters, 40, 5830-5833(2015).
[69] Zhang X X, Thibos L N, Bradley A. Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye[J]. Optometry and Vision Science, 68, 456-458(1991).
[70] Howarth P A, Bradley A. The longitudinal chromatic aberration of the human eye, and its correction[J]. Vision Research, 26, 361-366(1986).
[71] Zawadzki R J. CenseB, Zhang Y, et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction[J]. Optics Express, 16, 8126-8143(2008).
[72] Liang J Z, Williams D R. Aberrations and retinal image quality of the normal human eye[J]. Journal of the Optical Society of America A, 14, 2873-2883(1997).
[73] Campbell F W, Green D G. Optical and retinal factors affecting visual resolution[J]. The Journal of Physiology, 181, 576-593(1965).
[74] Donnelly W J, Roorda A. Optimal pupil size in the human eye for axial resolution[J]. Journal of the Optical Society of America A, 20, 2010-2015(2003).
[75] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).
[76] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 829-832(1982).
[77] Dreher A W, Bille J F, Weinreb R N. Active optical depth resolution improvement of the laser tomographic scanner[J]. Applied Optics, 28, 804-808(1989).
[78] Liang J Z, Grimm B, Goelz S et al. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor[J]. Journal of the Optical Society of America A, 11, 1949-1957(1994).
[79] Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 14, 2884-2892(1997).
[80] Roorda A, Romero-Borja F, Donnelly W J et al. Adaptive optics scanning laser ophthalmoscopy[J]. Optics Express, 10, 405-412(2002).
[81] Dubra A, Sulai Y, Norris J L et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope[J]. Biomedical Optics Express, 2, 1864-1876(2011).
[82] Merino D, Duncan J L, Tiruveedhula P et al. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope[J]. Biomedical Optics Express, 2, 2189-2201(2011).
[83] Chen L, Yang P Z, Kijlstra A. Distribution, markers, and functions of retinal microglia[J]. Ocular Immunology and Inflammation, 10, 27-39(2002).
[84] Ng T F, Streilein J W. Light-induced migration of retinal microglia into the subretinal space[J]. Investigative Ophthalmology & Visual Science, 42, 3301-3310(2001).
[86] Miller E B, Zhang P F, Ching K et al. In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 16603-16612(2019).
[87] Zawadzki R J, Zhang P F, Zam A et al. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina[J]. Biomedical Optics Express, 6, 2191-2210(2015).
[88] Rossi E A, Granger C E, Sharma R et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 586-591(2017).
[89] Hermann B, Fernández E J, Unterhuber A et al. Adaptive-optics ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 29, 2142-2144(2004).
[90] Zawadzki R J, Jones S M, Olivier S S et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging[J]. Optics Express, 13, 8532-8546(2005).
[91] Zhang Y, Rha J, Jonnal R S et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina[J]. Optics Express, 13, 4792-4811(2005).
[92] Fernández E J, Považay B, Hermann B et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator[J]. Vision Research, 45, 3432-3444(2005).
[94] Azimipour M, Jonnal R S, Werner J S et al. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging[J]. Optics Letters, 44, 4219-4222(2019).
[95] Chong S P, Zhang T W, Kho A et al. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization[J]. Biomedical Optics Express, 9, 1477-1491(2018).
[96] Wang Y Y, He Y, Wei L et al. Bimorph deformable mirror-based adaptive optics scanning laser ophthalmoscope for the clinical design and performance[J]. Neurophotonics, 6, 041111(2019).
[97] Wahl D J, Zhang P F, Mocci J et al. Adaptive optics in the mouse eye: wavefront sensing based vs image-guided aberration correction[J]. Biomedical Optics Express, 10, 4757-4774(2019).
[98] Wahl D J, Ju M J, Jian Y F et al. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence[J]. Biomedical Optics Express, 10, 4859-4873(2019).
[99] Jian Y F, Wong K, Sarunic M V. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering[J]. Journal of Biomedical Optics, 18, 026002(2013).
[100] Zhang X, Huo T C, Wang C M et al. Optical computing for optical coherence tomography[J]. Scientific Reports, 6, 37286(2016).
[101] Guevara-Torres A, Williams D R, Schallek J B. Imaging translucent cell bodies in the living mouse retina without contrast agents[J]. Biomedical Optics Express, 6, 2106-2119(2015).
[102] Guevara-Torres A, Joseph A, Schallek J B. Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye[J]. Biomedical Optics Express, 7, 4228-4249(2016).
[103] Wahl D J, Jian Y F, Bonora S et al. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice[J]. Biomedical Optics Express, 7, 1-12(2016).
[104] Wahl D J, Huang C, Bonora S et al. Pupil segmentation adaptive optics for invivo mouse retinal fluorescence imaging[J]. Optics Letters, 42, 1365-1368(2017).
[105] Zhou X L, Bedggood P, Bui B et al. Contrast-based sensorless adaptive optics for retinal imaging[J]. Biomedical Optics Express, 6, 3577-3595(2015).
[106] Ju M J, Heisler M, Wahl D et al. Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging[J]. Journal of Biomedical Optics, 22, 1-10(2017).
[107] Novotny H R, Alvis D L. A method of photographing fluorescence in circulating blood in the human retina[J]. Circulation, 24, 82-86(1961).
[108] Roorda A, Romero-Borja F, Donnelly W J et al. Adaptive optics scanning laser ophthalmoscopy[J]. Optics Express, 10, 405-412(2002).
[110] Zhang L, Song W Y, Shao D et al. Volumetric fluorescence retinal imaging in vivo over a 30-degree field of view by oblique scanning laser ophthalmoscopy (oSLO)[J]. Biomedical Optics Express, 9, 25-40(2018).
[111] Song W Y, Zhou L B, Yi J. Volumetric fluorescein angiography (vFA) by oblique scanning laser ophthalmoscopy in mouse retina at 200 B-scans per second[J]. Biomedical Optics Express, 10, 4907-4918(2019).
[112] Dunsby C. Optically sectioned imaging by oblique plane microscopy[J]. Optics Express, 16, 20306-20316(2008).
[113] Bouchard M B, Voleti V, Mendes C S et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms[J]. Nature Photonics, 9, 113-119(2015).
[114] Povazay B, Apolonski A A, Unterhuber A et al. Visible light optical coherence tomography[J]. Proceedings of SPIE, 4619, 470466(2002).
[116] Yi J, Liu W Z, Chen S Y et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light: Science & Applications, 4, e334(2015).
[117] Chen S Y, Yi J, Zhang H F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography[J]. Biomedical Optics Express, 6, 2840-2853(2015).
[118] Nafar Z, Jiang M S, Wen R et al. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification[J]. Biomedical Optics Express, 7, 3220-3229(2016).
[119] Pi S H, Camino A, Cepurna W et al. Automated spectroscopic retinal oximetry with visible-light optical coherence tomography[J]. Biomedical Optics Express, 9, 2056-2067(2018).
[120] Liu Q, Chen S Y, Soetikno B et al. Monitoring acute stroke in mouse model using laser speckle imaging-guided visible-light optical coherence tomography[J]. IEEE Transactions on Biomedical Engineering, 65, 2136-2142(2018).
[121] Chong S P, Merkle C W, Leahy C et al. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography[J]. Biomedical Optics Express, 6, 1429-1450(2015).
[122] Yi J, Chen S Y, Shu X et al. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy[J]. Biomedical Optics Express, 6, 3701-3713(2015).
[123] Chen S Y, Shu X, Nesper P L et al. Retinal oximetry in humans using visible-light optical coherence tomography [Invited][J]. Biomedical Optics Express, 8, 1415-1429(2017).
[124] Chong S P, Bernucci M, Radhakrishnan H et al. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope[J]. Biomedical Optics Express, 8, 323-337(2017).
[125] Zhang T W, Kho A M, Srinivasan V J. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking[J]. Biomedical Optics Express, 10, 2918-2931(2019).
[126] Kho A, Srinivasan V J. Compensating spatially dependent dispersion in visible light OCT[J]. Optics Letters, 44, 775-778(2019).
[127] Faber D J, Mik E G. Aalders M C G, et al. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography[J]. Optics Letters, 30, 1015-1017(2005).
[128] Lu C W, Lee C K, Tsai M T et al. Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography[J]. Optics Letters, 33, 416-418(2008).
[130] Chen S Y, Yi J, Liu W Z et al. Monte Carlo investigation of optical coherence tomography retinal oximetry[J]. IEEE Transactions on Biomedical Engineering, 62, 2308-2315(2015).
[131] Chen S Y, Liu Q, Shu X et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography[J]. Biomedical Optics Express, 7, 3377-3389(2016).
[132] Merkle C W, Chong S P, Kho A M et al. Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo[J]. Optics Letters, 43, 198-201(2018).
[133] Beckmann L, Zhang X, Nadkarni N A et al. Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through chronic microprism cranial window[J]. Biomedical Optics Express, 10, 5235-5250(2019).
[134] Dainty J C. Laser speckle and related phenomena[M]. Berlin: Springer Berlin Heidelberg(1975).
[135] J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 66, 1145-1150(1976).
[136] Dainty J C. I The statistics of speckle patterns[M]. ∥Progress in Optics. Amsterdam: Elsevier, 1-46(1977).
[137] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 4, 95-105(1999).
[138] Creath K. Phase-shifting speckle interferometry[J]. Applied Optics, 24, 3053-3058(1985).
[139] Cadotte D W, Mariampillai A, Cadotte A et al. Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility[J]. Biomedical Optics Express, 3, 911-919(2012).
[140] Curatolo A, Kennedy B, Sampson D et al. Speckle in optical coherence tomography[M]. ∥Wang K R, Tuchin V V. Advanced Biophotonics. Boca Raton: Taylor & Francis, 211-277(2013).
[141] Kobayashi M, Hanafusa H, Takada K et al. Polarization-independent interferometric optical-time-domain reflectometer[J]. Journal of Lightwave Technology, 9, 623-628(1991).
[142] Pircher M. Go'tzinger E, Leitgeb R, et al. Speckle reduction in optical coherence tomography by frequency compounding[J]. Journal of Biomedical Optics, 8, 565-569(2003).
[143] Iftimia N, Bouma B E, Tearney G J. Speckle reduction in optical coherence tomography by "path length encoded" angular compounding[J]. Journal of Biomedical Optics, 8, 260-263(2003).
[145] Liu Z L, Kurokawa K, Zhang F R et al. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 12803-12808(2017).
[146] Thouvenin O, Boccara C, Fink M et al. Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography[J]. Investigative Opthalmology & Visual Science, 58, 4605-4615(2017).
[147] Wells-Gray E M, Choi S S, Slabaugh M et al. Inner retinal changes in primary open angle glaucoma revealed through adaptive optics optical coherence tomography[J]. Journal of Glaucoma, 27, 1025-1028(2018).
[148] Zhang P F, Miller E B, Manna S K et al. Temporal speckle-averaging of optical coherence tomography volumes for in-vivo cellular resolution neuronal and vascular retinal imaging[J]. Neurophotonics, 6, 1-13(2019).
[149] Hunter J J, Merigan W H, Schallek J B. Imaging retinal activity in the living eye[J]. Annual Review of Vision Science, 5, 15-45(2019).
[150] Yu D Y, Cringle S J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease[J]. Progress in Retinal and Eye Research, 20, 175-208(2001).
[151] Wong-Riley M. Energy metabolism of the visual system[J]. Eye and Brain, 2, 99-116(2010).
[152] Migacz J V, Gorczynska I, Azimipour M et al. Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging[J]. Biomedical Optics Express, 10, 50-65(2019).
[153] Lowenthal S, Joyeux D. Speckle removal by a slowly moving diffuser associated with a motionless diffuser[J]. Journal of the Optical Society of America, 61, 847-851(1971).
[154] Kuratomi Y, Sekiya K, Satoh H et al. Speckle reduction mechanism in laser rear projection displays using a small moving diffuser[J]. Journal of the Optical Society of America A, 27, 1812-1817(2010).
[155] Kubota S, Goodman J W. Very efficient speckle contrast reduction realized by moving diffuser device[J]. Applied Optics, 49, 4385-4391(2010).
[156] Liba O, Lew M D. SoRelle E D, et al. Speckle-modulating optical coherence tomography in living mice and humans[J]. Nature Communications, 8, 15845(2017).
[157] Stremplewski P, Auksorius E, Wnuk P et al. In vivo volumetric imaging by crosstalk-free full-field OCT[J]. Optica, 6, 608-617(2019).
[158] Zhang P F, Manna S K, Miller E B et al. Aperture phase modulation with adaptive optics: a novel approach for speckle reduction and structure extraction in optical coherence tomography[J]. Biomedical Optics Express, 10, 552-570(2019).
[159] Liu S Y. Lamont M R E, Mulligan J A, et al. Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle[J]. Biomedical Optics Express, 9, 4919-4935(2018).
[160] McCulloch D L, Marmor M F, Brigell M G et al. ISCEV Standard for full-field clinical electroretinography (2015 update)[J]. Documenta Ophthalmologica, 130, 1-12(2015).
[161] Hofmann K P, Uhl R, Hoffmann W et al. Measurements of fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells[J]. Biophysics of Structure and Mechanism, 2, 61-77(1976).
[162] Harary H, Brown J, Pinto L. Rapid light-induced changes in near infrared transmission of rods in Bufo marinus[J]. Science, 202, 1083-1085(1978).
[163] Bizheva K, Pflug R, Hermann B et al. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 5066-5071(2006).
[164] Srinivasan V J, Wojtkowski M, Fujimoto J G et al. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 31, 2308-2310(2006).
[165] Hillmann D, Spahr H, Pfäffle C et al. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13138-13143(2016).
[166] Lu C D, Lee B, Schottenhamml J et al. Photoreceptor layer thickness changes during dark adaptation observed with ultrahigh-resolution optical coherence tomography[J]. Investigative Opthalmology & Visual Science, 58, 4632-4643(2017).
[168] Wang B Q, Lu Y M, Yao X C. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas[J]. Journal of Biomedical Optics, 21, 096010(2016).
[169] Zhang P F, Zawadzki R J, Goswami M et al. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, E2937-E2946(2017).
[170] Erchova I, Tumlinson A R, Fergusson J et al. Optophysiological characterisation of inner retina responses with high-resolution optical coherence tomography[J]. Scientific Reports, 8, 1813(2018).
[171] Suzuki W, Tsunoda K, Hanazono G et al. Stimulus-induced changes of reflectivity detected by optical coherence tomography in macaque retina[J]. Investigative Opthalmology & Visual Science, 54, 6345-6354(2013).
[172] Spahr H, Pfäffle C, Burhan S et al. Phase-sensitive interferometry of decorrelated speckle patterns[J]. Scientific Reports, 9, 11748(2019).
[173] Yao X C, Wang B Q. Intrinsic optical signal imaging of retinal physiology: a review[J]. Journal of Biomedical Optics, 20, 090901(2015).
[174] Zhang Q X, Lu R W, Wang B Q et al. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors[J]. Scientific Reports, 5, 9595(2015).
[175] Son T, Wang B Q, Thapa D et al. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers[J]. Biomedical Optics Express, 7, 3151-3162(2016).
[176] Son T, Alam M, Toslak D et al. Functional optical coherence tomography of neurovascular coupling interactions in the retina[J]. Journal of Biophotonics, 11, e201800089(2018).
[177] Zhang P F, Goswami M, Zawadzki R J et al. The photosensitivity of rhodopsin bleaching and light-induced increases of fundus reflectance in mice measured in vivo with scanning laser ophthalmoscopy[J]. Investigative Opthalmology & Visual Science, 57, 3650-3664(2016).
[178] Korenbrot J I, Cone R A. Dark ionic flux and the effects of light in isolated rod outer segments[J]. The Journal of General Physiology, 60, 20-45(1972).
[179] Korenbrot J I, Brown D T, Cone R A. Membrane characteristics and osmotic behavior of isolated rod outer segments[J]. The Journal of Cell Biology, 56, 389-398(1973).
[180] Azimipour M, Migacz J V, Zawadzki R J et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz[J]. Optica, 6, 300-303(2019).
[181] Zhang F R, Kurokawa K, Lassoued A et al. Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 7951-7956(2019).
[182] Roorda A, Williams D R. The arrangement of the three cone classes in the living human eye[J]. Nature, 397, 520-522(1999).
[183] Jiao S L, Jiang M S, Hu J M et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging[J]. Optics Express, 18, 3967-3972(2010).
[184] de la Zerda A, Paulus Y M, Teed R et al. Photoacoustic ocular imaging[J]. Optics Letters, 35, 270-272(2010).
[185] Song W, Wei Q, Liu T et al. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform[J]. Journal of Biomedical Optics, 17, 061206(2012).
[187] Nie L M, Huang P, Li W T et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy[J]. ACS Nano, 8, 12141-12150(2014).
[189] Chen M M, Knox H J, Tang Y Q et al. Simultaneous photoacoustic imaging of intravascular and tissue oxygenation[J]. Optics Letters, 44, 3773-3776(2019).
Get Citation
Copy Citation Text
Zhang Pengfei, Zhang Tingwei, Song Weiye, Lu Yiming, Jian Yifan. Review of Advances in Ophthalmic Optical Imaging Technologies from Several Mouse Retinal Imaging Methods[J]. Chinese Journal of Lasers, 2020, 47(2): 207003
Category: biomedical photonics and laser medicine
Received: Nov. 22, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Pengfei Zhang (pfzhang@ucdavis.edu)