Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 902(2022)

Tunable Bi Near-Infrared Emission in Aluminosilicate Glass Based on Local Excess Charge Model

LI Xiaoman1、* and GUO Hai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(52)

    [1] [1] QIU J B, KAWAMOTO Y, ZHANG J J. Highly efficient green up-conversion luminescence of Nd3+-Yb3+-Ho3+ codoped fluorite-type nanocrystals in transparent glass ceramics[J]. J Appl Phys, 2002, 92(9): 5163-5168.

    [2] [2] YAN D, ZHU J L, WU H J, et al. Energy transfer and photoluminescence modification in Yb-Er-Tm triply doped Y2Ti2O7 upconversion inverse opal[J]. J Mater Chem, 2012, 22(35): 18558-18563.

    [3] [3] OHMAE N, KUSE N, FERMANN M E, et al. All-polarization- maintaining, single-port Er: Fiber comb for high-stability comparison of optical lattice clocks[J]. Appl Phys Express, 2017, 10(6): 062503.

    [4] [4] TANABE S. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication[J]. CR Chim, 2002, 5(12): 815-824.

    [7] [7] JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nat Photon, 2013, 7(11): 861-867.

    [8] [8] SONG J H, KIM J, JANG H, et al. Fast and bright spontaneous emission of Er3+ ions in metallic nanocavity[J]. Nat Commun, 2015, 6: 7080.

    [9] [9] DVOYRIn V V, MASHINSKY V M, DIANOV E M, et al. Absorption, Fluorescence and Optical Amplification in MCVD Bismuth-Doped Silica Glass Optical Fibre[C]. 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), 2005, 4: 949-950

    [10] [10] CHU Y S, REN J, ZHANG J Z, et al. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers[J]. Sci Rep, 2016, 6: 33865.

    [11] [11] MEARS R J, REEKIE L, JAUNCEY I M, et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm[J]. Electron Lett, 1987, 23(19): 1026-1028.

    [12] [12] FUJIMOTO Y, NAKATSUKA M. Infrared luminescence from bismuth-doped silica glass[J]. Jpn J Appl Phys, Part 2, 2001, 40(3B): L279-L281.

    [13] [13] MENG X G, QIU J R, PENG M Y, et al. Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses[J]. Opt Express, 2005, 13(5): 1635-1642.

    [14] [14] PENG M Y, QIU J R, CHEN D P, et al. Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3[J]. Opt Express, 2005, 13(18): 6892-6898.

    [15] [15] DIANOV E M, DVOYRIN V V, MASHINSKY V M, et al. CW bismuth fibre laser[J]. Quantum Electron, 2005, 35(12): 1083-1084.

    [16] [16] CAO J K, GUO H, HU F F, et al. Instant precipitation of KMgF3:Ni2+ nanocrystals with broad emission (1.3-2.2 μm) for potential combustion gas sensors[J]. J Am Ceram Soc, 2018, 101(9): 3890-3899.

    [17] [17] GAO G J, PENG M Y, WONDRACZEK L. Temperature dependence and quantum efficiency of ultrabroad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics[J]. Opt Lett, 2012, 37(7): 1166-1168.

    [18] [18] DUAN X L, YUAN D R, CHENG X F, et al. Preparation and optical properties of Co2+-doped Li2O-Ga2O3-SiO2 glass-ceramics[J]. J Alloys Compd, 2008, 453(1): 379-381.

    [19] [19] ZOU R, HUANG J J, SHI J P, et al. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence[J]. Nano Res, 2017, 10(6): 2070-2082.

    [20] [20] DENKER B, GALAGAN B, OSIKO V, et al. Luminescent properties of Bi-doped boro-alumino-phosphate glasses[J]. Appl Phys B, 2007, 87(1): 135-137.

    [21] [21] RUAN J, WU E, ZENG H P, et al. Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses[J]. Appl Phys Lett, 2008, 92(10): 101121.

    [22] [22] QIU Y Q, KANG J, LI C X, et al. Broadband near-infrared luminescence in bismuth borate glasses[J]. Laser Phys, 2010, 20(2): 487-492.

    [23] [23] YANG G, CHEN D P, WANG W, et al. Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses[J]. J Eur Ceram Soc, 2008, 28(16): 3189-3191.

    [24] [24] XU Y S, QI J N, LIN C G, et al. Nanocrystal-enhanced near-IR emission in the bismuth-doped chalcogenide glasses[J]. Chin Opt Lett, 2013, 11(4): 041601.

    [25] [25] HUGHES M A, SUZUKI T, OHISHI Y. Optical components and materials viii[M]. Bellingham; Spie-Int Soc Optical Engineering. 2011: 7934.

    [26] [26] ZHANG N, SHARAFUDEEN K N, DONG G P, et al. Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses[J]. J Am Ceram Soc, 2012, 95(12): 3842-3846.

    [27] [27] ZHAO Y Q, WONDRACZEK L, MERMET A, et al. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers[J]. Opt Express, 2015, 23(9): 12423-12433.

    [28] [28] XU Z S, XU C, GUO Q B, et al. Effect of TeO2 on near-infrared emission from bismuth centers in borogermanate glasses[J]. J Am Ceram Soc, 2016, 99(3): 760-764.

    [29] [29] ZHAO Y Q, PENG M Y, MERMET A, et al. Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation[J]. J Mater Chem C, 2014, 2(37): 7830-7835.

    [30] [30] WANG L P, TAN L L, YUE Y Z, et al. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth-doped germanate laser glass[J]. J Am Ceram Soc, 2016, 99(6): 2071-2076.

    [31] [31] SU L B, ZHOU P, YU J, et al. Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials[J]. Opt Express, 2009, 17(16): 13554-13560.

    [32] [32] SU L B, ZHAO H Y, LI H J, et al. Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals[J]. Opt Lett, 2011, 36(23): 4551-4553.

    [33] [33] PENG M Y, LEI J C, LI L Y, et al. Site-specific reduction of Bi3+ to Bi2+ in bismuth-doped over-stoichiometric barium phosphates[J]. J Mater Chem C, 2013, 1(34): 5303-5308.

    [34] [34] PENG M Y, DONG G P, WONDRACZEK L, et al. Discussion on the origin of NIR emission from Bi-doped materials[J]. J Non-Cryst Solids, 2011, 357(11-13): 2241-2245.

    [35] [35] ABD El-Moneim A, YOUSSOF I M, ABD El-Latif L. Structural role of RO and Al2O3 in borate glasses using an ultrasonic technique[J]. Acta Mater, 2006, 54(14): 3811-3819.

    [36] [36] DUFFY J A. Redox equilibria in glass[J]. J Non-Cryst Solids, 1996, 196: 45-50.

    [37] [37] LI X M, CAO J K, WANG L P, et al. Predictable tendency of Bi NIR emission in Bi-doped magnesium aluminosilicate laser glasses[J]. J Am Ceram Soc, 2017, 101(3): 1159-1168.

    [38] [38] LI X M, CAO J K, PENG M Y. The origin of the heterogeneous distribution of bismuth in aluminosilicate laser glasses[J]. J Am Ceram Soc, 2018, 101(7): 2921-2929.

    [39] [39] LI Y J, SONG Z G, LI C, et al. Effects of alkaline earth ions on the broadband near infrared emissions of Bi doped aluminophosphsilicate glasses[J]. Mater Chem Phys, 2013, 139(2/3): 851-855.

    [40] [40] JIANG Z W, DAI N L, YANG L Y, et al. Effects of Al2O3 composition on the near-infrared emission in Bi-doped and Yb-Bi-codoped silicate glasses for broadband optical amplification[J]. J Non-Cryst Solids, 2014, 383: 196-199.

    [41] [41] ZHENG J Y, TAN L L, WANG L P, et al. Superbroad visible to NIR photoluminescence from Bi+ evidenced in Ba2B5O9Cl:Bi crystal[J]. Opt Express, 2016, 24(3): 2830-2835.

    [42] [42] LI X M, HU F F, PENG M Y, et al. Crystallization kinetics and enhanced Bi NIR luminescence of transparent silicate glass-ceramics containing Sr2YbF7 nanocrystals[J]. J Am Ceram Soc, 2017, 100(2): 574-582.

    [43] [43] PENG M Y, SPRENGER B, SCHMIDT M A, et al. Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting bismuth centers[J]. Opt Express, 2010, 18(12): 12852-12863.

    [44] [44] IFTEKHAR S, GRINS J, EDEN M. Composition-property relationships of the La2O3-Al2O3-SiO2 glass system[J]. J Non-Cryst Solids, 2010, 356(20): 1043-1048.

    [45] [45] ARONNE A, ESPOSITO S, PERNICE P. Ftir and dta study of lanthanum aluminosilicate glasses[J]. Mater Chem Phys, 1997, 51(2): 163-168.

    [46] [46] LI X M, PENG M Y, CAO J K, et al. Distribution and stabilization of bismuth NIR centers in Bi-doped aluminosilicate laser glasses by managing glass network structure[J]. J Mater Chem C, 2018, 6(29): 7814-7821.

    [47] [47] MACKENZIE K J D, SMITH M E. Multinuclear solid-state NMR of inorganic materials[J]. Pergamon Materials Series, 2002, 6: 201-268.

    [50] [50] CLAYDEN N J, ESPOSITO S, ARONNE A, et al. Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses[J]. J Non-Cryst Solids, 1999, 258(1): 11-19.

    [51] [51] BJERRUM N, SMITH G. Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions[J]. Inorg Chem, 1967, 6(6): 1162-1172.

    [52] [52] RADHAKRISHNA S, SETTY R. Bismuth centers in alkali halides[J]. Phys Rev B, 1976, 14(3): 969-976.

    [53] [53] ZHENG J Y, PENG M Y, CAO R P, et al. et al. Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: Evidence for the Bi0 model[J]. Opt Express, 2012, 20(20): 22569-22578.

    [54] [54] KANG F W, PENG M Y, LEI D Y, et al. Recoverable and unrecoverable Bi3+-related photoemissions induced by thermal expansion and contraction in LuVO4:Bi3+ and ScVO4:Bi3+ compounds[J]. Chem Mater, 2016, 28(21): 7807-7815.

    [55] [55] WANG W C, YUAN J, CHEN D D, et al.Enhanced broadband 1.8 μm M emission in Bi/Tm3+ co-doped fluorogermanate glasses[J].Opt Mater Express, 2015, 5(6): 1250-1258.

    Tools

    Get Citation

    Copy Citation Text

    LI Xiaoman, GUO Hai. Tunable Bi Near-Infrared Emission in Aluminosilicate Glass Based on Local Excess Charge Model[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 29, 2021

    Accepted: --

    Published Online: Nov. 13, 2022

    The Author Email: LI Xiaoman (lxmwyk668@qfnu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20211023

    Topics