Chinese Optics Letters, Volume. 21, Issue 1, 011201(2023)
Simultaneous temperature and magnetic field measurements using time-division multiplexing
[1] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, M. D. Lukin. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455, 644(2008).
[2] X.-D. Chen, E.-H. Wang, L.-K. Shan, C. Feng, Y. Zheng, Y. Dong, G.-C. Guo, F.-W. Sun. Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction. Nat. Commun., 12, 6389(2021).
[3] F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7, 459(2011).
[4] V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L. S. Bouchard, D. Budker. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett., 104, 070801(2010).
[5] X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, G.-C. Guo. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl. Phys. Lett., 99, 161903(2011).
[6] S.-C. Zhang, S. Li, B. Du, Y. Dong, Y. Zheng, H.-B. Lin, B.-W. Zhao, W. Zhu, G.-Z. Wang, X.-D. Chen, G.-C. Guo, F.-W. Sun. Thermal-demagnetization-enhanced hybrid fiber-based thermometer coupled with nitrogen-vacancy centers. Opt. Mater. Express, 9, 4634(2019).
[7] S.-C. Zhang, Y. Dong, B. Du, H.-B. Lin, S. Li, W. Zhu, G.-Z. Wang, X.-D. Chen, G.-C. Guo, F.-W. Sun. A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers. Rev. Sci. Instrum., 92, 044904(2021).
[8] P. Ovartchaiyapong, K. W. Lee, B. A. Myers, A. C. B. Jayich. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun., 5, 4429(2014).
[9] C. Li, R. Soleyman, M. Kohandel, P. Cappellaro. SARS-CoV-2 quantum sensor based on nitrogen-vacancy centers in diamond. Nano. Lett., 22, 43(2022).
[10] M. C. Marshall, M. J. Turner, M. J. H. Ku, D. F. Phillips, R. L. Walsworth. Directional detection of dark matter with diamond. Quantum Sci. Technol., 6, 024011(2021).
[11] H. T. Dinani, E. Muñoz, J. R. Maze. Sensing electrochemical signals using a nitrogen-vacancy center in diamond. Nanomaterials, 11, 358(2021).
[12] L. Rondin, J.-P. Tetienne, P. Spinicelli, C. D. Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, V. Jacques. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett., 100, 153118(2012).
[13] H. A. R. El-Ella, S. Ahmadi, A. M. Wojciechowski, A. Huck, U. L. Andersen. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles. Opt. Express, 25, 14809(2017).
[14] E. Moreva, E. Bernardi, P. Traina, A. Sosso, S. D. Tchernij, J. Forneris, F. Picollo, G. Brida, Ž. Pastuović, I. P. Degiovanni, P. Olivero, M. Genovese. Practical applications of quantum sensing: a simple method to enhance the sensitivity of nitrogen-vacancy-based temperature sensors. Phys. Rev. Appl., 13, 054057(2020).
[15] A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, U. L. Andersen. Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond. Appl. Phys. Lett., 113, 013502(2018).
[16] R. S. Schoenfeld, W. Harneit. Real time magnetic field sensing and imaging using a single spin in diamond. Phys. Rev. Lett., 106, 030802(2011).
[17] H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, D. Braje. Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. Appl. Phys. Lett., 112, 252406(2018).
[18] C. S. Shin, C. E. Avalos, M. C. Butler, D. R. Trease, S. J. Seltzer, J. P. Mustonen, D. J. Kennedy, V. M. Acosta, D. Budker, A. Pines, V. S. Bajaj. Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit. J. Appl. Phys., 112, 124519(2012).
[19] J. M. Schloss, J. F. Barry, M. J. Turner, R. L. Walsworth. Simultaneous broadband vector magnetometry using solid-state spins. Phys. Rev. Appl., 10, 034044(2018).
[20] H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, D. Englund. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys., 11, 393(2015).
[21] E. Bauch, C. A. Hart, J. M. Schloss, M. J. Turner, J. F. Barry, P. Kehayias, S. Singh, R. L. Walsworth. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys. Rev. X, 8, 031025(2018).
[22] J. H. Shim, S.-J. Lee, S. Ghimire, J. I. Hwang, K.-G. Lee, K. Kim, M. J. Turner, C. A. Hart, R. L. Walsworth, S. Oh. Multiplexed sensing of magnetic field and temperature in real time using a nitrogen-vacancy ensemble in diamond. Phys. Rev. Appl., 17, 014009(2022).
[23] Y. Hatano, J. Shin, D. Nishitani, H. Iwatsuka, Y. Masuyama, H. Sugiyama, M. Ishii, S. Onoda, T. Ohshima, K. Arai, T. Iwasaki, M. Hatano. Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor. Appl. Phys. Lett., 118, 034001(2021).
[24] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, R. L. Walsworth. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 92, 015004(2020).
[25] I. Fescenko, A. Jarmola, I. Savukov, P. Kehayias, J. Smits, J. Damron, N. Ristoff, N. Mosavian, V. M. Acosta. Diamond magnetometer enhanced by ferrite flux concentrators. Phys. Rev. Res., 2, 023394(2020).
Get Citation
Copy Citation Text
Haobin Lin, Ce Feng, Yang Dong, Wang Jiang, Xuedong Gao, Shaochun Zhang, Xiangdong Chen, Fangwen Sun, "Simultaneous temperature and magnetic field measurements using time-division multiplexing," Chin. Opt. Lett. 21, 011201 (2023)
Category: Instrumentation, Measurement, and Optical Sensing
Received: May. 18, 2022
Accepted: Aug. 4, 2022
Posted: Aug. 5, 2022
Published Online: Sep. 20, 2022
The Author Email: Shaochun Zhang (zscyw@ustc.edu.cn)