Acta Optica Sinica, Volume. 40, Issue 6, 0615001(2020)

Skull Point Cloud Registration Algorithm Based on Hierarchical Optimization Strategy

Wen Yang, Mingquan Zhou*, Xiangkui Zhang, Guohua Geng, Xiaoning Liu, and Yangyang Liu
Author Affiliations
  • College of Information Science and Technology, Northwest University, Xi’an, Shaanxi 710127, China
  • show less
    Figures & Tables(13)
    Flow chart of the proposed algorithm
    Geometric feature constraint
    Skulls to be registered. (a) Target skull; (b) reference skull
    Comparison of coarse registration results. (a) Registration results without optimization of k-means algorithm; (b) registration results optimized by proposed algorithm; (c) rough registration results of Ref. [28] method; (d) rough registration results of Ref. [37] method
    Comparison of fine registration results. (a) Registration results of classical ICP algorithm; (b) registration results with k-d tree optimization; (c) registration results with geometric feature constraint optimization; (d) registration results of the improved ICP algorithm
    Initial position
    Coarse registration results
    Registration results of ICP algorithm. (a) Front; (b) rear
    Registration results of improved ICP algorithm. (a) Front; (b) rear
    • Table 1. Efficiency comparison of different rough registration methods

      View table

      Table 1. Efficiency comparison of different rough registration methods

      AlgorithmRegistration error /mmTime-consuming /s
      Without k-means optimization5.259×10-118.322
      Ref. [28] method6.126×10-124.235
      Ref. [37] method5.387×10-137.448
      Proposed method3.432×10-122.839
    • Table 2. Efficiency comparison of different fine registration methods

      View table

      Table 2. Efficiency comparison of different fine registration methods

      AlgorithmNumber of iterationsRegistration error /mmTime-consuming /s
      Classical ICP method494.568×10-244.688
      Adding k-d tree optimization324.287×10-221.557
      ICP method with geometric feature constraints453.062×10-237.951
      Improved ICP method312.934×10-228.124
    • Table 3. Efficiency comparison of different registration methods

      View table

      Table 3. Efficiency comparison of different registration methods

      AlgorithmMatching rate /%Registration error /mmTime-consuming /s
      RANSAC[38]61.38.022×10-265.493
      LO-RANSAC[39]72.65.556×10-257.739
      4PCS[40]78.84.760×10-254.875
      Super-4PCS[41]84.13.011×10-245.618
      ICP[7]76.64.826×10-261.942
      Go-ICP[42]76.24.986×10-261.557
      GA-ICP[43]75.55.159×10-257.334
      ICP-CP[14]84.82.994×10-249.561
      IRLS-ICP[44]82.73.558×10-252.188
      Proposed method89.92.355×10-242.632
    • Table 4. Efficiency comparison of different registration methods

      View table

      Table 4. Efficiency comparison of different registration methods

      AlgorithmMatching rate /%Registration error /mmTime-consuming /s
      RANSAC[38]54.59.113×10-231.224
      LO-RANSAC[39]63.37.739×10-257.739
      4PCS[40]79.64.609×10-224.682
      Super-4PCS[41]80.74.288×10-222.899
      ICP[7]79.14.977×10-226.861
      Go-ICP[42]78.65.096×10-225.933
      GA-ICP[43]77.85.355×10-224.129
      ICP-CP[14]81.14.071×10-222.567
      IRLS-ICP[44]80.44.525×10-223.337
      Proposed method81.63.749×10-221.735
    Tools

    Get Citation

    Copy Citation Text

    Wen Yang, Mingquan Zhou, Xiangkui Zhang, Guohua Geng, Xiaoning Liu, Yangyang Liu. Skull Point Cloud Registration Algorithm Based on Hierarchical Optimization Strategy[J]. Acta Optica Sinica, 2020, 40(6): 0615001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Oct. 20, 2019

    Accepted: Nov. 30, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Zhou Mingquan (nwuzmq@163.com)

    DOI:10.3788/AOS202040.0615001

    Topics