Infrared and Laser Engineering, Volume. 54, Issue 4, 20240561(2025)
Recent progress on thermal sensitivity of hollow core fibers (invited)
[3] RUSSELL P S J. Photonic-crystal fibers[J]. Journal of Lightwave Technology, 24, 4729-4749(2006).
[4] POLETTI F, PETROVICH M N, RICHARDSON D J. Hollow-core photonic bandgap fibers: Technology and applications[J]. Nanophotonics, 2, 315-340(2013).
[5] DING W, WANG Y Y, GAO S F et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-12(2020).
[8] [8] CHEN Y, PETROVICH M N, NUMKAM FOKOUA E, et al. Hollow ce DNANF optical Fiber with 0.11 dBkm loss [C]Optical Fiber Communication Conference Optica Publishing Group, 2024: Th4A.8.
[11] [11] GE D W, GAO S F, ZUO M Q, et al. Estimation of Kerr nonlinearity in an antiresonant hollowce fiber by highder QAM transmission [C]Optical Fiber Communications Conference Exhibition, 2023: W4D.6.
[18] [18] NESPOLA A, SOGHCHI S R, HOOPER L, et al. Ultralonghaul WDM transmission in a reduced intermodal interference NANF hollowce fiber [C]Optical Fiber Communication Conference Optica Publishing Group, 2021: F3B.5.
[19] [19] GE D W, XIONG Y F, WU Y, et al. First penaltyfree realtime cofrequency cotime fullduplex optical fiber transmission with 202.1 Tbs capacity enabled by hollowce 5element NANF [C]Optical Fiber Communication Conference Optica Publishing Group, 2024: M3J.2.
[23] [23] NUMKAM FOKOUA E, ZHU W W, CHEN Y, et al. Thermally insensitive optical fibres their applications [C]Asia Communications Photonics Conference 2019: T3G. 4.
[27] [27] SCH S R, TOUSSAINT A F. Optical Fiber Coatings, Specialty Optical Fibers Hbook[M]. Amsterdam: Elsevier, 2007.
[28] [28] DSM. Product data f DeSolite DS2042 [EBOL]. (20141201) [20190301] https:d7rh5s3nxmpy4.cloudfront.CMP1007filesNextGenDeSoliteSupercoating(SecondarycoatingDS2042)FiberOpticCenter.pdf.
[29] [29] DSM. Product data f DeSolite 3471314 [EBOL]. (20110307) [20190405] https:focenter.commediawysiwygdocumentsAngstromBondFiberOpticCenterAngstromBondDSM3471314UVCureFiberReCoating%281Lt%29FiberOpticCenter.pdfutm_source=chatgpt.com.
[42] [42] BOUSONVILLE M, BOCK M K, FELBER M, et al. New phase stable optical fiber [C]Proc Beam Instrum Wkshop, 2012: 101103.
[43] [43] YOFC. Phase Stable Optical Cable [EBOL]. (20190321) [20240504] https:en.yofc.comview2356.html.
[46] ZHU W, NUMKAM Fokoua E, TARANTA A A et al. The thermal phase sensitivity of both coated and uncoated standard and hollow core fibers down to cryogenic temperatures[J]. Journal of Lightwave Technology, 38, 2477-2484(2019).
[48] WANG Y, LI Z, YU F et al. Temperature-dependent group delay of photonic-bandgap hollow-core fiber tuned by surface-mode coupling[J]. Optics Express, 30, 222-231(2021).
[49] NUMKAM Fokoua E, ZHU W, DING M et al. Polarization effects on thermally stable latency in hollow-core photonic bandgap fibers[J]. Journal of Lightwave Technology, 39, 2142-2150(2020).
[52] [52] WANG Y Y, COUNY F, ROBERTS P J, et al. Low loss broadb transmission in optimized ceshape Kagome hollowce PCF [C]Conference on Lasers ElectroOptics, 2010: CPDB4.
[56] BELARDI W, KNIGHT J C. Hollow antiresonant fibers with reduced attenuation[J]. Optics Letters, 39, 1853-1856(2014).
[57] POLETTI F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 22, 23807-23828(2014).
[58] DING W, WANG Y Y. Analytic model for light guidance in single-wall hollow-core anti-resonant fibers[J]. Optics Express, 22, 27242-27256(2014).
[59] [59] BRADLEY T D, HAYES J R, CHEN Y, et al. Recd lowloss 1.3 dBkm data transmitting antiresonant hollow ce fibre [C]European Conference Exhibition on Optical Communication, 2018: Th3F.2.
[60] [60] BRADLEY T D, JASION G T, HAYES J R, et al. Antiresonant hollow ce fibre with 0.65 dBkm attenuation across the C L telecommunication bs [C]European Conference Exhibition on Optical Communication, 2019: 14.
[61] [61] JASION G T, BRADLEY T D, HARRINGTON K, et al. Hollow ce NANF with 0.28 dBkm attenuation in the C L bs [C]Optical Fiber Communications Conference Exhibition, 2020: Th4B.4.
[62] [62] SAKR H, BRADLEY T D, JASION G T, et al. Hollow ce NANFs with five nested tubes recd low loss at 850, 1060, 1300 1625 nm [C]Optical Fiber Communications Conference Exhibition, 2021: F3A.4.
[63] [63] JASION G T, SAKR H, HAYES J R, et al. 0.174 dBkm hollow ce double nested antiresonant nodeless fiber (DNANF) [C]Optical Fiber Communications Conference Exhibition, 2022: Th4C.7.
[64] [64] GAO S F, SUN Y Z, CHEN H, et al. Fourfold d doublenested antiresonant hollowce fiber f ultralow loss robust single mode operation [C]Advanced Photonics Congress, 2024: JTh4A.3.
[65] [65] LI P, CHEN G Q, CHU J, et al. 15 km continuous length low loss hollow ce fiber in 1 µm, C L Bs [C]European Conference Exhibition on Optical Communication, 2024: Th1A.3.
[67] GAO S F, WANG Y Y, DING W et al. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach[J]. Laser & Photonics Reviews, 14, 1900241(2019).
[73] [73] DAVIDSON I A, RIKIMI S, SAKR H, et al. Antiresonant, infrared silica hollowce fiber [C]Advanced Photonics Congress, 2020: SoW1H.7.
[74] [74] ADAMU A I, HASSAN M R A, CHEN Y, et al. 10.9 km hollow ce double nested antiresonant nodeless fiber (DNANF) with 0.33dBkm loss at 850nm [C]Optical Fiber Communications Conference Exhibition, 2024: M3J.1.
[75] [75] DING M, NUMKAM FOKOUA E, BRADLEY T D, et al. Hollow ce fiber temperature sensitivity reduction via winding on a thermallyinsensitive coil [C]CLEO: Science Innovations. Optica Publishing Group, 2021: STu1Q.7.
[76] [76] EDREIRA I B, DING M, SHI B, et al. Thermal properties of a hollowce optical fiber spooled onto a drum with negative coefficient of thermal expansion [C]2023 IEEE Photonics Conference (IPC), 2023: 12.
[78] [78] MASSEY B S, WARDSMITH J. Mechanics of fluids[M]. Cheltenham: Stanley Thnes, 1998.
[79] [79] SUN Y Z, LIANG Z, GAO S F, et al. Gas flowing effect in antiresonant hollow ce fibers f thermal sensitivity reduction [C]CLEO: Science Innovations. Optica Publishing Group, 2022: SW4K.7.
[82] [82] NICHOLSON J W, MANGAN B, MENG L, et al. Lowloss, low returnloss coupling between SMF single mode, hollowce fibers using connects [C]CLEO: Science Innovations. Optica Publishing Group, 2014: JTu4A.71.
[91] [91] LEFEVRE H C, The FiberOptic Gyroscope [M]. 3rd ed. Nwood: Artech House, 2022.
[93] TERREL M A, DIGONNET M J F, FAN S. Resonant fiber optic gyroscope using an air-core fiber[J]. Journal of Lightwave Technology, 30, 931-937(2011).
[98] SANDERS G A, TARANTA A A, NARAYANAN C et al. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber[J]. Optics Letters, 46, 46-49(2020).
[103] YAO X S, MALEKI L. Optoelectronic microwave oscillator[J]. Journal of the Optical Society of America B, 13, 1725-1735(1996).
[106] FENG Z, MARRA G, ZHANG X et al. Stable optical frequency comb distribution enabled by hollow-core fibers[J]. Laser & Photonics Reviews, 16, 2200167(2022).
[107] HRDINA K E, DURAN C A. ULE®glass with improved thermal properties for EUVL masks and projection optics substrates[J]. International Journal of Applied Glass Science, 5, 82-88(2013).
Get Citation
Copy Citation Text
Yizhi SUN, Helin WU, Shoufei GAO, Yingying WANG, Wei DING. Recent progress on thermal sensitivity of hollow core fibers (invited)[J]. Infrared and Laser Engineering, 2025, 54(4): 20240561
Category: Invited review
Received: Dec. 3, 2024
Accepted: --
Published Online: May. 16, 2025
The Author Email: Wei DING (dingwei@jnu.edu.cn)