Chinese Journal of Lasers, Volume. 50, Issue 20, 2002403(2023)
Superhydrophilic Asymmetric Dual‑Rail Surfaces Preparated by Nanosecond Laser and Droplet
[1] Ju J, Bai H, Zheng Y M et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 3, 1-6(2012).
[2] Li J, Guo Z G. Spontaneous directional transportations of water droplets on surfaces driven by gradient structures[J]. Nanoscale, 10, 13814-13831(2018).
[3] Li J, Cong J P, Guo N et al. Laser construction and mechanical mechanism of bionic structure of super-hydrophobic low-adhesion self-cleaning butterfly-like scales[J]. Chinese Journal of Lasers, 49, 1602009(2022).
[4] Li J, Gao X J, Fu Z L et al. Research advancement on fabrication of artificial compound eye using ultrafast laser[J]. Chinese Journal of Lasers, 49, 1002704(2022).
[5] Wang L, Wang L Y, Xu K J et al. Micro-nano structure and optical characteristics of achillidesbianor Cramer scales[J]. Acta Optica Sinica, 41, 0523002(2021).
[6] Yang C J, Yang X, Wang M et al. Application of bionic superhydrophobic surface in jaw end face of microgripper[J]. Chinese Journal of Lasers, 49, 1002602(2022).
[7] Gogolides E, Ellinas K, Tserepi A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems[J]. Microelectronic Engineering, 132, 135-155(2015).
[8] Bhushan B, Jung Y C, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 1631-1672(2009).
[9] Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2, 1-17(2017).
[10] Mumm F, van Helvoort A T J, Sikorski P. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems[J]. ACS Nano, 3, 2647-2652(2009).
[11] Ranella A, Barberoglou M, Bakogianni S et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 6, 2711-2720(2010).
[12] Lima A C, Mano J F. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview[J]. Nanomedicine, 10, 271-297(2015).
[13] Watson G S, Green D W, Schwarzkopf L et al. A gecko skin micro/nano structure—a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface[J]. Acta Biomaterialia, 21, 109-122(2015).
[14] Mu X, Zheng W F, Sun J S et al. Microfluidics for manipulating cells[J]. Small, 9, 9-21(2013).
[15] Marui T. An introduction to micro/nano-bubbles and their applications[J]. Journal of Systemics Council, 11, 68-73(2013).
[16] Liu C R, Sun J, Li J et al. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces[J]. Scientific Reports, 7, 1-8(2017).
[17] Wang L, Shi W W, Hou Y P et al. Droplet transport on a nano- and microstructured surface with a wettability gradient in low-temperature or high-humidity environments[J]. Advanced Materials Interfaces, 2, 1500040(2015).
[18] Ma H Y, Cao M Y, Zhang C H et al. Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Advanced Functional Materials, 28, 1705091(2018).
[19] Zhang C H, Zhang B, Ma H Y et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 12, 2048-2055(2018).
[20] Feng S L, Wang Q Q, Xing Y et al. Continuous directional water transport on integrating tapered surfaces[J]. Advanced Materials Interfaces, 7, 2000081(2020).
[21] Zhu S W, Bian Y C, Wu T et al. Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails[J]. Applied Physics Letters, 116, 093706(2020).
[22] Zhang X S, Zhu F Y, Han M D et al. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures[J]. Langmuir, 29, 10769-10775(2013).
[23] Chen H, Tang T, Amirfazli A. Liquid transfer mechanism between two surfaces and the role of contact angles[J]. Soft Matter, 10, 2503-2507(2014).
[24] Zhuang K, Lu Y, Wang X L et al. Architecture-driven fast droplet transport without mass loss[J]. Langmuir, 37, 12519-12528(2021).
[25] Lei W W, Hou G L, Liu M J et al. High-speed transport of liquid droplets in magnetic tubular microactuators[J]. Science Advances, 4, eaau8767(2018).
[26] Yang X L, Song J L, Zheng H X et al. Anisotropic sliding on dual-rail hydrophilic tracks[J]. Lab on a Chip, 17, 1041-1050(2017).
Get Citation
Copy Citation Text
Jianfeng Gu, Jinpeng Fang, Chuanzong Li, Yue Wang, Zhixiang Gu, Yi Xiao. Superhydrophilic Asymmetric Dual‑Rail Surfaces Preparated by Nanosecond Laser and Droplet
Category: Laser Micro-Nano Manufacturing
Received: Mar. 9, 2023
Accepted: Apr. 3, 2023
Published Online: Aug. 29, 2023
The Author Email: Xiao Yi (xiaoyiphd@163.com)