Optics and Precision Engineering, Volume. 33, Issue 7, 1141(2025)

Underwater image enhancement based on multi-branch residual attention network

Zhuming CHENG*, Jiaxuan LI, San'ao HUANG, Lichao HAN, and Peizhen WANG
Author Affiliations
  • School of Electrical and Information Engineering, Anhui University of Technology, Maanshan243032, China
  • show less
    References(34)

    [1] GONG W ZH, CHU J K, CHENG H Y et al. Underwater polarization image fusion based on unsupervised learning and attention mechanisms[J]. Opt. Precision Eng., 31, 3212-3220(2023).

         巩文哲, 褚金奎, 成昊远. 基于无监督学习和注意力机制的水下偏振图像融合[J]. 光学 精密工程, 31, 3212-3220(2023).

    [2] 喻俊志, 孔诗涵, 孟岩. 水下视觉环境感知方法与技术[J]. 机器人, 44, 224-235(2022).

         YU J ZH, KONG SH H, MENG Y. Methods and technologies for visual perception of underwater environment[J]. Robot, 44, 224-235(2022).

    [3] YAN ZH P, QU S Y, XING W. An overview of underwater image enhancement methods[J]. CAAI Transactions on Intelligent Systems, 17, 860-873(2022).

         严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 17, 860-873(2022).

    [4] HENKE B, VAHL M, ZHOU Z L. Removing color cast of underwater images through non-constant color constancy hypothesis[C], 4, 20-24(2013).

    [5] GURAKSIN G E, KOSE U, DEPERLIOGLU O. Underwater image enhancement based on contrast adjustment via differential evolution algorithm[C], 2, 1-5(2016).

    [6] ABDUL GHANI A S, MAT ISA N A. Underwater image quality enhancement through integrated color model with Rayleigh distribution[J]. Applied Soft Computing, 27, 219-230(2015).

    [7] HU ZH Y, CHEN Q, ZHU D Q. Underwater image enhancement based on color balance and multi-scale fusion[J]. Opt. Precision Eng., 30, 2133-2146(2022).

         胡振宇, 陈琦, 朱大奇. 基于颜色平衡和多尺度融合的水下图像增强[J]. 光学 精密工程, 30, 2133-2146(2022).

    [8] ZHAO W F, RONG S H, LI T Y et al. Enhancing underwater imagery via latent low-rank decomposition and image fusion[J]. IEEE Journal of Oceanic Engineering, 48, 147-159(2023).

    [9] DREWS P, NASCIMENTO EDO, MORAES F et al. Transmission estimation in underwater single images[C], 2, 825-830(2013).

    [10] LIANG Z, DING X Y, WANG Y F et al. GUDCP: generalization of underwater dark channel prior for underwater image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 4879-4884(2022).

    [11] 袁国铭, 刘海军, 李晓丽. 纹理感知联合颜色直方图特征的水下图像增强[J]. 光学 精密工程, 32, 2112-2127(2024).

         YUAN G M, LIU H J, LI X L et al. Underwater image enhancement using joint texture perception and color histogram features[J]. Opt. Precision Eng., 32, 2112-2127(2024).

    [12] WANG H T, LIN S, TAO ZH Y. Underwater image enhancement based on dual attention mechanism and improved U-Net[J]. Electronic Measurement Technology, 46, 181-187(2023).

         王海涛, 林森, 陶志勇. 双注意力机制与改进U-Net的水下图像增强[J]. 电子测量技术, 46, 181-187(2023).

    [13] PRADHAN P, MAZUMDER A, MANDAL S et al. Fusion-UWnet: multi-channel fusion-based deep CNN for underwater image enhancement[C], 20, 1-5(2021).

    [14] LIU S B, FAN H J, LIN S et al. Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 7, 5326-5333(2022).

    [15] LI K Q, FAN H T, QI Q et al. TCTL-net: template-free color transfer learning for self-attention driven underwater image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 34, 4682-4697(2024).

    [16] 夏晓华, 钟预全, 胡鹏. 综合多尺度信息和注意力机制的水下图像增强[J]. 光学 精密工程, 32, 1582-1594(2024).

         XIA X H, ZHONG Y Q, HU P et al. Underwater image enhancement synthesizing multi-scale information and attention mechanisms[J]. Opt. Precision Eng., 32, 1582-1594(2024).

    [17] ZHAO H L, YUAN H C. Residual dense blocks and contrastive regularization integrated underwater image enhancement network[J]. IEEE Access, 11, 113017-113026(2023).

    [18] WANG X, SHI H. DRHA-UIE: an underwater image enhancement method based on dual residual hybrid attention block[J]. Acta Electronica Sinica, 51, 2398-2407(2023).

         王欣, 石慧. DRHA-UIE: 基于双重残差混合注意力模块的水下图像增强方法[J]. 电子学报, 51, 2398-2407(2023).

    [19] JIANG J, YE T, BAI J et al. Five A+ Network:You only need 9K parameters for underwater image enhancement[J]. Computer Vision and Pattern Recognition(2023).

    [20] HAN Y L, HUANG L H, HONG Z H et al. Deep supervised residual dense network for underwater image enhancement[J]. Sensors, 21, 3289(2021).

    [21] ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 5, 3227-3234(2020).

    [22] PENG L T, ZHU C L, BIAN L H. U-shape transformer forUnderwater image enhancement[C], 290-307(2023).

    [23] DREWS P L J, NASCIMENTO E R, BOTELHO S S C et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 36, 24-35(2016).

    [24] EDGE C, ISLAM M J, MORSE C et al. A generative approach for detection-driven underwater image enhancement[J](2020).

    [25] LI C Y, GUO C L, REN W Q et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 29, 4376-4389(2019).

    [26] FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C], 7159-7165(2018).

    Tools

    Get Citation

    Copy Citation Text

    Zhuming CHENG, Jiaxuan LI, San'ao HUANG, Lichao HAN, Peizhen WANG. Underwater image enhancement based on multi-branch residual attention network[J]. Optics and Precision Engineering, 2025, 33(7): 1141

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 3, 2024

    Accepted: --

    Published Online: Jun. 23, 2025

    The Author Email: Zhuming CHENG (czm602@ahut.edu.cn)

    DOI:10.37188/OPE.20253307.1141

    Topics