Opto-Electronic Engineering, Volume. 52, Issue 4, 250001(2025)

No-reference point cloud quality assessment based on fusion of 3D and 2D features

Taiwei Liu, Mei Yu*, and Renwei Tu
Author Affiliations
  • Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
  • show less
    References(29)

    [1] Tao Z Y, Li H, Dou M S et al. Multi-resolution feature fusion for point cloud classification and segmentation network[J]. Opto-Electron Eng, 50, 230166(2023).

    [2] Gao W, Sun S, Zheng H et al. OpenDMC: an open-source library and performance evaluation for deep-learning-based multi-frame compression[C], 9685-9688(2023).

    [3] Mekuria R N, Li Z, Tulvan C et al. Evaluation criteria for PCC (point cloud compression)[J]. ISO/IEC JTC, 1, N16332(2016).

    [5] Cignoni P, Rocchini C, Scopigno R. Metro: measuring error on simplified surfaces[J]. Comput Graph Forum, 17, 167-174(1998).

    [9] Javaheri A, Brites C, Pereira F et al. Mahalanobis based point to distribution metric for point cloud geometry quality evaluation[J]. IEEE Signal Process Lett, 27, 1350-1354(2020).

    [12] Yang Q, Ma Z, Xu Y L et al. Inferring point cloud quality via graph similarity[J]. IEEE Trans Pattern Anal Mach Intell, 44, 3015-3029(2020).

    [15] Liu Q, Su H L, Duanmu Z F et al. Perceptual quality assessment of colored 3D point clouds[J]. IEEE Trans Vis Comput Graph, 29, 3642-3655(2023).

    [16] Lv J Y, Su H L, Long J C et al. Point cloud quality assessment using multi-level features[J]. IEEE Access, 12, 47755-47767(2024).

    [17] Tu R W, Jiang G Y, Yu M et al. Pseudo-reference point cloud quality measurement based on joint 2-D and 3-D distortion description[J]. IEEE Trans Instrum Meas, 72, 5019314(2023).

    [18] Liu Q, Yuan H, Su H L et al. PQA-Net: deep no reference point cloud quality assessment via multi-view projection[J]. IEEE Trans Circuits Syst Video Technol, 31, 4645-4660(2021).

    [21] Tu R W, Jiang G Y, Yu M et al. V-PCC projection based blind point cloud quality assessment for compression distortion[J]. IEEE Trans Emerg Top Comput Intell, 7, 462-473(2023).

    [23] Qi C R, Yi L, Su H et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C], 5105-5114(2017).

    [25] He Z Y, Jiang G Y, Yu M et al. TGP-PCQA: texture and geometry projection based quality assessment for colored point clouds[J]. J Vis Commun Image Represent, 83, 103449(2022).

    [26] Yang Q, Chen H, Ma Z et al. Predicting the perceptual quality of point cloud: a 3D-to-2D projection-based exploration[J]. IEEE Trans Multimedia, 23, 3877-3891(2021).

    [29] Alexiou E, Viola I, Borges T M et al. A comprehensive study of the rate-distortion performance in MPEG point cloud compression[J]. APSIPA Trans Signal Inf Process, 8, e27(2019).

    Tools

    Get Citation

    Copy Citation Text

    Taiwei Liu, Mei Yu, Renwei Tu. No-reference point cloud quality assessment based on fusion of 3D and 2D features[J]. Opto-Electronic Engineering, 2025, 52(4): 250001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jan. 1, 2025

    Accepted: Feb. 28, 2025

    Published Online: Jun. 11, 2025

    The Author Email: Mei Yu (郁梅)

    DOI:10.12086/oee.2025.250001

    Topics