Chinese Journal of Lasers, Volume. 44, Issue 2, 201019(2017)
Effect of Volume Bragg Gratings Dispersion on Diffracted Beam Quality
[1] [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J].Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
[2] [2] Ke W W, Wang X J, Bao X F, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 2013, 21(12): 14272-14281.
[3] [3] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.
[4] [4] Ward B, Robin C,Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.
[5] [5] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
[6] [6] Jauregui C,Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.
[7] [7] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.
[9] [9] Wang X L, Zhou P, Ma Y X, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Optics Letters, 2011, 36(16): 3121-3123.
[11] [11] Ma Y X, Wang X L, Leng J Y, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953.
[12] [12] Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35): 6762-6765.
[13] [13] Bochove E J. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445.
[14] [14] Sevian A, Andrusyak O, Ciapurin I, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Optics Letters, 2008, 33(4): 384-386.
[15] [15] Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24): 29620-29627.
[16] [16] Drachenberg D R,Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6): 1242-1246.
[17] [17] Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle Beams, 2015, 27(7): 071012.
[19] [19] Shen Benjian, Zheng Guangwei, Tan Jichun, et al. Diffraction characteristic analysis of sinc-apodized reflective volume Bragg grating[J]. Chinese J Lasers, 2011, 38(9): 0902003.
[20] [20] Yin S Q, Zhang B, Dan Y Q. Effects of the deformation of reflection volume Bragg gratings on the M2-factor of super-Gaussian laser beams[J]. Optics Communications, 2010, 283(7): 1418-1423.
[21] [21] Shu H, Bass M. Modeling the reflection of a laser beam by a deformed highly reflective volume Bragg grating[J]. Applied Optics, 2007, 46(15): 2930-2938.
Get Citation
Copy Citation Text
Zhou Taidou, Liang Xiaobao, Zhao Lei, Wang Lin, Li Chao, Luo Yun, Wang Jianjun, Jing Feng. Effect of Volume Bragg Gratings Dispersion on Diffracted Beam Quality[J]. Chinese Journal of Lasers, 2017, 44(2): 201019
Category: laser devices and laser physics
Received: Sep. 9, 2016
Accepted: --
Published Online: Feb. 22, 2017
The Author Email: Taidou Zhou (taidou88@126.com)