Acta Optica Sinica, Volume. 41, Issue 1, 0119001(2021)

New Principle, Platform, and Application of Nonlinear Frequency Conversion

Xianfeng Chen1,2,3,4、*, Yuanlin Zheng1,2, Haigang Liu1, Shijie Liu1, Yuanhua Li1,5, and Xiaohui Zhao1,6
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Jinan Institute of Quantum Technology, Jinan, Shandong 250101, China
  • 4Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan, Shandong 250358, China
  • 5Department of Physics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
  • 6Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201899, China
  • show less
    References(185)

    [1] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118(1961).

    [2] Fejer M M. Nonlinear optical frequency conversion[J]. Physics Today, 47, 25-32(1994).

    [3] Bloembergen N. Nonlinear optics[M]. New York: W.A. Benjamin(1965).

    [4] Shen Y R. The principle of nonlinear optics[M]. New York: John Wiley and Sons(1984).

    [6] Zhang W G, Yu H W, Wu H P et al. Phase-matching in nonlinear optical compounds: a materials perspective[J]. Chemistry of Materials, 29, 2655-2668(2017).

    [11] Baudrier-Raybaut M, Haïdar R, Kupecek P et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials[J]. Nature, 432, 374-376(2004).

    [15] Ma X F, Zeng P, Zhou H Y. Erratum: phase-matching quantum key distribution[J]. Physical Review X, 9, 029901(2019).

    [17] Chang L, Boes A, Guo X W et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion[J]. Laser & Photonics Reviews, 12, 1800149(2018).

    [23] Raymer M G, Srinivasan K. Manipulating the color and shape of single photons[J]. Physics Today, 65, 32-37(2012).

    [28] Zhang Y, Gao Z D, Qi Z et al. Nonlinear erenkov radiation in nonlinear photonic crystal waveguides[J]. Physical Review Letters, 100, 163904(2008).

    [30] Sheng Y, Roppo V, Kong Q et al. Tailoring Cerenkov second-harmonic generation in bulk nonlinear photonic crystal[J]. Optics Letters, 36, 2593-2595(2011).

    [32] Sheng Y, Wang W J, Shiloh R et al. erenkov third-harmonic generation in χ(2) nonlinear photonic crystal[J]. Applied Physics Letters, 98, 241114(2011).

    [37] Yang S Y, Seidel J, Byrnes S J et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 5, 143-147(2010).

    [38] Deng X W, Ren H J, Lao H Y et al. Research on Cherenkov second-harmonic generation in periodically poled lithium niobate by femtosecond pulses[J]. Journal of the Optical Society of America B, 27, 1475-1480(2010).

    [39] Deng X W, Chen X F. Domain wall characterization in ferroelectrics by using localized nonlinearities[J]. Optics Express, 18, 15597-15602(2010).

    [44] Zhao X H, Zheng Y L, Ren H J et al. Nonlinear Snell law for grazing incidence along interfaces with discontinuous second-order susceptibilities[J]. Physical Review A, 95, 043841(2017).

    [46] Suganuma T, Kubo H, Wakabayashi O et al. 157-nm coherent light source as an inspection tool for F(2) laser lithography[J]. Optics Letters, 27, 46-48(2002).

    [47] Togashi T, Kanai T, Sekikawa T et al. Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal[J]. Optics Letters, 28, 254-256(2003).

    [48] Kiss T, Kanetaka F, Yokoya T et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor[J]. Physical Review Letters, 94, 057001(2005).

    [50] Okazaki K, Ota Y, Kotani Y et al. Octet-line node structure of superconducting order parameter in KFe2As2[J]. Science, 337, 1314-1317(2012).

    [53] Kanai T, Kanda T, Sekikawa T et al. Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti: sapphire laser[J]. Journal of the Optical Society of America B, 21, 370-375(2004).

    [59] Nomura Y, Ito Y, Ozawa A et al. Coherent quasi-cw 153 nm light source at 33 MHz repetition rate[J]. Optics Letters, 36, 1758-1760(2011).

    [61] Buchter S C, Fan T Y, Liberman V et al. Periodically poled BaMgF(4) for ultraviolet frequency generation[J]. Optics Letters, 26, 1693-1695(2001).

    [63] Zhao X, Zheng Y, An N et al. Surface enhanced nonlinear Cherenkov radiation in one-dimensional nonlinear photonic crystal[J]. Optics Express, 25, 13897-13902(2017).

    [64] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).

    [69] Cai X L, Wang J W, Strain M J et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).

    [70] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 25, 225-230(2008).

    [71] Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 47, 264-267(1979).

    [72] Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 99, 213901(2007).

    [73] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 32, 979-981(2007).

    [74] Broky J, Siviloglou G A, Dogariu A et al. Self-healing properties of optical Airy beams[J]. Optics Express, 16, 12880-12891(2008).

    [75] Polynkin P, Kolesik M, Moloney J V et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 324, 229-232(2009).

    [76] Siviloglou G A, Broky J, Dogariu A et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 33, 207-209(2008).

    [77] Zhang P, Prakash J, Zhang Z et al. Trapping and guiding microparticles with morphing autofocusing Airy beams[J]. Optics Letters, 36, 2883-2885(2011).

    [78] Hall D G. Vector-beam solutions of Maxwell's wave equation[J]. Optics Letters, 21, 9-11(1996).

    [79] Chen H, Hao J, Zhang B F et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Optics Letters, 36, 3179-3181(2011).

    [80] Wang X L, Ding J, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).

    [82] Lee W M, Yuan X C, Cheong W C. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation[J]. Optics Letters, 29, 1796-1798(2004).

    [85] Zhang L, Qiu X, Zeng L et al. Multiple trapping using a focused hybrid vector beam[J]. Chinese Physics B, 28, 094202(2019).

    [86] Huang L, Guo H, Li J et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Optics Letters, 37, 1694-1696(2012).

    [87] Rui G H, Zhan Q W. Trapping of resonant metallic nanoparticles with engineered vectorial optical field[J]. Nanophotonics, 3, 351-361(2014).

    [92] Leach J, Jack B, Romero J et al. Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces[J]. Optics Express, 17, 8287-8293(2009).

    [97] Milione G. Lavery M P J, Huang H, et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Optics Letters, 40, 1980-1983(2015).

    [98] Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 40, 4843-4846(2015).

    [99] Chu J, Li X, Smithwick Q et al. Coding/decoding two-dimensional images with orbital angular momentum of light[J]. Optics Letters, 41, 1490-1493(2016).

    [102] Gahagan K T, Swartzlander G A. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap[J]. Journal of the Optical Society of America B, 16, 533-537(1999).

    [103] Tao S, Yuan X C, Lin J et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 13, 7726-7731(2005).

    [104] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [105] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 40, 597-600(2015).

    [106] Chen Y, Fang Z X, Ren Y X et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 54, 8030-8035(2015).

    [109] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 25, 1493-1495(2000).

    [111] Zhou J, Liu Y, Ke Y et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 40, 3193-3196(2015).

    [112] Libster-Hershko A, Trajtenberg-Mills S, Arie A. Dynamic control of light beams in second harmonic generation[J]. Optics Letters, 40, 1944-1947(2015).

    [113] Li S M, Kong L J, Ren Z C et al. Managing orbital angular momentum in second-harmonic generation[J]. Physical Review A, 88, 035801(2013).

    [114] Chaitanya A, Aadhi A, Jabir M V et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams[J]. Optics Letters, 40, 2614-2617(2015).

    [117] Liu H, Li J, Zhao X et al. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave[J]. Optics Express, 24, 15666-15671(2016).

    [118] Zhou H, Liu H, Sang M et al. Nonlinear Raman-Nath second harmonic generation of hybrid structured fundamental wave[J]. Optics Express, 25, 3774-3779(2017).

    [119] Li H, Liu H G, Chen X F. Nonlinear vortex beam array generation by spatially modulated fundamental wave[J]. Optics Express, 25, 28668-28673(2017).

    [124] Li H, Liu H G, Chen X F[J]. Dual waveband generator of perfect vector beams Photonics Research, 2019, 1340-1344.

    [129] Qiao Y, Peng Y, Zheng Y et al. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping[J]. Optics Letters, 42, 1895-1898(2017).

    [132] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).

    [133] Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 5, 1438-1441(2018).

    [134] Roussev R V, Langrock C, Kurz J R et al. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths[J]. Optics Letters, 29, 1518-1520(2004).

    [135] Niu Y, Lin C, Liu X et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains[J]. Applied Physics Letters, 116, 101104(2020).

    [136] Gainutdinov R V, Volk T R, Zhang H H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films[J]. Applied Physics Letters, 110, 132905(2020).

    [137] Lu J J, Surya J B, Liu X W et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 6, 1455-1460(2019).

    [138] Wolf R, Jia Y C, Bonaus S et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries[J]. Optica, 5, 872-875(2018).

    [139] Liang H X, Luo R, He Y et al. High-quality lithium niobate photonic crystal nanocavities[J]. Optica, 4, 1251-1258(2017).

    [140] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017).

    [145] Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation[J]. Nature Physics, 3, 430-435(2007).

    [147] Levy J S, Foster M A, Gaeta A L et al. Harmonic generation in silicon nitride ring resonators[J]. Optics Express, 19, 11415-11421(2011).

    [158] Ho K P, Kahn J M. Optical frequency comb generator using phase modulation in amplified circulating loop[J]. IEEE Photonics Technology Letters, 5, 721-725(1993).

    [160] Sun Q C, Mao Y L, Chen S J et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nature Photonics, 10, 671-675(2016).

    [162] Specht H P, Nöelleke C, Reiserer A et al[J]. A single-atom quantum memory Nature, 2011, 190-193.

    [163] Yurke B, Denker J S. Quantum network theory[J]. Physical Review A, 29, 1419(1984).

    [166] Li Y H, Cao Y, Dai H et al. Experimental round-robin differential phase-shift quantum key distribution[J]. Physical Review A, 93, 030302(2016).

    [167] Li X Y, Voss P L, Sharping J E et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band[J]. Physical Review Letters, 94, 053601(2005).

    [168] Napolitano M, Koschorreck M, Dubost B et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit[J]. Nature, 471, 486-489(2011).

    [171] Varnava M, Browne D E, Rudolph T. How good must single photon sources and detectors be for efficient linear optical quantum computation?[J]. Physical Review Letters, 100, 060502(2008).

    [174] Xiang T, Li Y H, Zheng Y L et al. Multiple-DWDM-channel heralded single-photon source based on a periodically poled lithium niobate waveguide[J]. Optics Express, 25, 12493-12498(2017).

    [176] Kumar P. Quantum frequency conversion[J]. Optics Letters, 15, 1476-1478(1990).

    [178] Liao S K, Cai W Q, Handsteiner J et al. Satellite-relayed intercontinental quantum network[J]. Physical Review Letters, 120, 030501(2018).

    [179] Xu P, Yong H L, Chen L K et al. Two-hierarchy entanglement swapping for a linear optical quantum repeater[J]. Physical Review Letters, 119, 170502(2017).

    [181] Sun Q C, Jiang Y F, Mao Y L et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources[J]. Optica, 4, 1214-1218(2017).

    [182] Sangouard N, Sanguinetti B, Curtz N et al. Faithful entanglement swapping based on sum-frequency generation[J]. Physical Review Letters, 106, 120403(2011).

    Tools

    Get Citation

    Copy Citation Text

    Xianfeng Chen, Yuanlin Zheng, Haigang Liu, Shijie Liu, Yuanhua Li, Xiaohui Zhao. New Principle, Platform, and Application of Nonlinear Frequency Conversion[J]. Acta Optica Sinica, 2021, 41(1): 0119001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Dec. 1, 2020

    Accepted: Dec. 14, 2020

    Published Online: Feb. 23, 2021

    The Author Email: Chen Xianfeng (xfchen@sjtu.edu.cn)

    DOI:10.3788/AOS202141.0119001

    Topics