Laser & Optoelectronics Progress, Volume. 61, Issue 19, 1913010(2024)

Toward Large-Scale Programmable Silicon Photonic Signal Processor (Invited)

Yiwei Xie*, Jiachen Wu, Xinyan Ju, Zezhong Zhou, Yujun Liu, Shengyao Qian, Shunhua Liu, Huan Li, and Daoxin Dai
Author Affiliations
  • Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang , China
  • show less
    Figures & Tables(5)
    Large-scale delay line array. (a) MRR-based binary tree 8×1 delay line[33]; (b) MRR-based 4×4 delay line array[38]; (c) 8×5 optical delay line phased array antenna based on ultra-low loss ultra-thin silicon waveguide[21]; (d) 32×7 delay line arrays based on ultra-low-loss broadened silicon waveguides
    Large-scale optical switch array and large-scale delay line array. (a) Thermo-optical switches in 32×32 Benes topology [40]; (b) calibration-free 16×16 switch with Benes topology using low-phase error MZI[41]; (c) 32×32 electro-optic switch with Benes topology[44]; (d) 32 × 32 strictly-non-blocking optical switch[47]; (e) 240×240 MEMS Crossbar silicon based large-scale array optical switch[48]
    Programmable optically switched grid arrays[52]. Feedback waveguide mesh networks based on (a) rectangular, (b) hexagonal, and (c) triangular topologies; (d) performance comparison of different feedback waveguide mesh structures
    Programmable optical neural network structure. (a) Schematic of two-layer 4×4 CNN experiment for speech recognition[9]; (b) 8×8 optical signal processing circuits for multichannel optical switching[20]; (c) schematic of the 8×8 CNN in implementing complex-valued networks and system workflow[55]; (d) 16×16 programmable matrix computation processor; (e) 4096 computational metaphotonic accelerator[56]; (f) 32-channel AWG-based optical reservoir calculations[57]
    • Table 1. Comparison of the reported large-scale silicon optical signal processors

      View table

      Table 1. Comparison of the reported large-scale silicon optical signal processors

      YearSizeStructureWaveguide loss /(dB/cm)Total loss /dBPower consumption /(mW/π)Tuning mechanismConfiguring methodsTotal power consumption /mWApplication
      2010331×8MRR0.5512250TO8000Beam forming
      2020211×8MZI and spirals1.33.5‒7 (on-chip)20TO1450Beam forming
      201948240×240Vertical adiabatic coupler0.459.8MEMSLarge-scale optical switch
      2020428×8MZI0.86.6TO1500Optical switch
      20234032×32MZI0.5823‒28TOGDOptical switch
      20164316×16MZI143.28‒5.88EOPSO1170Optical switch
      202345128×128MZIEOLarge-scale optical switch
      20174432×32MZI0.5312.9‒18.5TO247.4/542.3Optical switch
      20185964×64MZI30.7‒48.3TOOptical switch
      2019465×5MZI28300‒360TO3300Optical switch
      20234732×32MZI112.8830.55TO980Optical switch
      2020307-hexagonal waveguide meshMZI22TOSelf-configuration algorithmsArbitrary filter spectrum
      2020514-hexagonal waveguide meshMZITOArbitrary filter spectrum, optical switch, multiport router
      201794×4MZIs0.33TOSGDSpeech recognition
      2020208×8MZIsTOGDMultiple input multiple output
      2021558×8MZIsTOBP/GDLogic gate and data set classification
      20235732×32AWGTOPSOTime series prediction
    Tools

    Get Citation

    Copy Citation Text

    Yiwei Xie, Jiachen Wu, Xinyan Ju, Zezhong Zhou, Yujun Liu, Shengyao Qian, Shunhua Liu, Huan Li, Daoxin Dai. Toward Large-Scale Programmable Silicon Photonic Signal Processor (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1913010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Aug. 26, 2024

    Accepted: Sep. 13, 2024

    Published Online: Oct. 21, 2024

    The Author Email:

    DOI:10.3788/LOP241910

    CSTR:32186.14.LOP241910

    Topics