Opto-Electronic Engineering, Volume. 50, Issue 11, 230219-1(2023)

Research progress of telescopes for space-based gravitational wave missions

Xiaoyong Wang, Shaojun Bai*, Qian Zhang, Xuling Lin, Yang Li, and Chenhui Xia
Author Affiliations
  • Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • show less
    References(54)

    [1] Livas J C. Possible space-based gravitational-wave observatory mission concept[R](2015).

    [2] Hammesfahr A. LISA mission study overview[J]. Class Quantum Grav, 18, 4045-4051(2001).

    [3] Jennrich O. LISA technology and instrumentation[J]. Class Quantum Grav, 26, 153001(2009).

    [4] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 33, 035010(2016).

    [5] Luo Z R, Guo Z K, Jin G et al. A brief analysis to Taiji: science and technology[J]. Results Phys, 16, 102918(2020).

    [6] Luo Z R, Wang Y, Wu Y L et al. The Taiji program: a concise overview[J]. Prog Theor Exp Phys, 2021, 05A108(2021).

    [7] Livas J C, Sankar S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proc SPIE, 9904, 99041K(2016).

    [8] Robertson D I, McNamara P, Ward H et al. Optics for LISA[J]. Class Quantum Grav, 14, 1575-1577(1997).

    [9] Xiao Q, Duan H Z, Ming M et al. The analysis of the far-field phase and the tilt-to-length error contribution in space-based laser interferometry[J]. Class Quantum Grav, 40, 065009(2023).

    [10] Livas J C, Arsenovic P, Crow J A et al. Telescopes for space-based gravitational wave missions[J]. Opt Eng, 52, 091811(2013).

    [11] Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proc SPIE, 9143, 914314(2014).

    [12] Livas J, Sankar S. Optical telescope design study results[J]. J Phys Conf Ser, 610, 012029(2015).

    [13] Fan W T, Zhao H C, Fan L et al. Preliminary analysis of space gravitational wave detection telescope system technology[J]. Acta Sci Nat Univ Sunyatseni, 60, 178-185(2021).

    [14] Fan Z C, Zhao L J, Cao S Y et al. High performance telescope system design for the TianQin project[J]. Class Quantum Grav, 39, 195017(2022).

    [15] Fan Z C, Ji H R, Mo Y et al. Pupil aberrations correction of the afocal telescope for the TianQin project[J]. Class Quantum Grav, 40, 195017(2023).

    [16] Wang Z, Sha W, Chen Z et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chin Opt, 11, 131-151(2018).

    [17] Yu M, Li J C, Lin H A et al. Optical system design of large-aperture space gravitational wave telescope[J]. Opt Eng, 62, 065107(2023).

    [18] Isleif K S, Gerberding O, Penkert D et al. Suppressing ghost beams: backlink options for LISA[J]. J Phys Conf Ser, 840, 012016(2017).

    [19] Livas J, Sankar S, West G et al. eLISA telescope in-field pointing and scattered light study[J]. J Phys Conf Ser, 840, 012015(2017).

    [20] Spector A D. Investigation of the telescope back-reflection for space-based interferometric gravitational wave detectors[D](2015).

    [21] Kim D, Choi H, Brendel T et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 4, 210040(2021).

    [22] Tian S H, Huang Y M, Xu Y J et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 50, 230040(2023).

    [23] Schuldt T, Gohlke M, Weise D et al. Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor[J]. Class Quantum Grav, 26, 085008(2009).

    [24] Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Grav, 37, 065005(2020).

    [25] Escudero Sanz I, Heske A, Livas J C. A telescope for LISA–the laser interferometer space antenna[J]. Adv Opt Technol, 7, 395-400(2018).

    [26] Lehan J P, Howard J M, Li H et al. Pupil aberrations in the LISA transceiver design[J]. Proc SPIE, 11479, 114790D(2020).

    [27] Papa J C, Howard J M, Rolland J P. Survey of the four-mirror freeform imager solution space[J]. Opt Express, 29, 41534-41551(2021).

    [28] Weise D, Marenaci P, Weimer P et al. Opto-mechanical architecture of the LISA instrument[J]. Proc SPIE, 10566, 1056611(2017).

    [29] Chen S N, Jiang H L, Wang C Y et al. Optical system design of inter-spacecraft laser interferometry telescope[J]. Opt Photonics J, 9, 26-37(2019).

    [30] Yu M, Li J C, Lin H A et al. Design of optical system for low-sensitivity space gravitational wave telescope[J]. Chin Opt, 16, 1384-1393(2023).

    [31] Li J C, Lin H A, Huang Y Z et al. Evaluation method for the design results of space gravitational-wave telescopes[J]. Meas Sci Technol, 34, 055409(2023).

    [32] Weise D R, Marenaci P, Weimer P et al. Alternative opto-mechanical architectures for the LISA instrument[J]. J Phys Conf Ser, 154, 012029(2009).

    [33] Leng R K, Wang S, Wang Z et al. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chin Opt, 16, 1081-1088(2023).

    [34] Spector A, Mueller G. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors[J]. Class Quantum Grav, 29, 205005(2012).

    [35] Sankar S R, Livas J C. Initial progress with numerical modelling of scattered light in a candidate eLISA telescope[J]. J Phys Conf Ser, 610, 012031(2015).

    [36] Khodnevych V, Lintz M, Dinu-Jaeger N et al. Stray light estimates due to micrometeoroid damage in space optics, application to the LISA telescope[J]. J Astron Telesc Instrum Syst, 6, 048005(2020).

    [37] Weise D, Braxmaier C, Gath P et al. Optical metrology subsystem of the LISA gravitational wave detector[J]. Proc SPIE, 10567, 105670Q(2017).

    [38] Verlaan A L, Hogenhuis H, Pijnenburg J et al. LISA telescope assembly optical stability characterization for ESA[J]. Proc SPIE, 10564, 105640K(2017).

    [39] Sanjuán J, Preston A, Korytov D et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope[J]. Rev Sci Instrum, 82, 124501(2011).

    [40] Sanjuán J, Korytov D, Mueller G et al. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors[J]. Rev Sci Instrum, 83, 116107(2012).

    [41] Krieg J, Carré A, Döhring T et al. The past decade of ZERODUR® glass-ceramics in space applications[J]. Proc SPIE, 12180, 121805N(2022).

    [42] Brooks T E, Eng R, Stahl H P. Optothermal stability of large ULE and Zerodur mirrors[J]. Proc SPIE, 10743, 107430A(2018).

    [43] Gath P F, Weise D, Schulte H R et al. LISA mission and system architectures and performances[J]. J Phys Conf Ser, 154, 012013(2009).

    [46] Peabody H, Merkowitz S. LISA thermal design[J]. Class Quantum Grav, 22, S403-S411(2005).

    [47] Peabody H, Merkowitz S M. Low frequency thermal performance of the LISA sciencecraft[J]. AIP Conf Proc, 873, 204-209(2006).

    [49] Xia B, Chen H Y, Wang Y P et al. External heat flux and thermal control design of space gravitational wave detection satellite[J]. Acta Sci Nat Univ Sunyatseni, 60, 138-145(2021).

    [50] Chen H Y, Ling C, Yao Z Y et al. Thermal environment analysis for TianQin: II. Solar irradiance disparity across constellation[J]. Class Quantum Grav, 39, 165009(2022).

    [51] Chen H Y, Ding Y W, Pan J J et al. Thermal environment analysis for TianQin: III. Low-frequency thermal transfer inside the flat-top sun shield[J]. Class Quantum Grav, 40, 085001(2023).

    [52] Chen H Y, Ling C, Zhang X F et al. Thermal environment analysis for TianQin[J]. Class Quantum Grav, 38, 155015(2021).

    [53] Umińska A A, Kulkarni S, Sanjuan J et al. Ground testing of the LISA telescope[J]. Proc SPIE, 11820, 118200I(2021).

    [54] Jersey K, Zhang Y Q, Harley-Trochimczyk I et al. Design, fabrication, and testing of an optical truss interferometer for the LISA telescope[J]. Proc SPIE, 11820, 118200L(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoyong Wang, Shaojun Bai, Qian Zhang, Xuling Lin, Yang Li, Chenhui Xia. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electronic Engineering, 2023, 50(11): 230219-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Sep. 1, 2023

    Accepted: Nov. 24, 2023

    Published Online: Mar. 26, 2024

    The Author Email: Shaojun Bai (白绍竣)

    DOI:10.12086/oee.2023.230219

    Topics