Remote Sensing Technology and Application, Volume. 39, Issue 4, 793(2024)
Advances of Satellite Remote Sensing Retrieval on Non-CO2 Greenhouse Gases
[1] SCHWAB K, BRENDE B. The Global Risks Report 2022 17th Edition(2022).
[2] MONTZKA S A, DLUGOKENCKY E J, BUTLER J H. Non-CO2 greenhouse gases and climate change. Nature, 476, 43-50(2011).
[3] DHAKAL S, MINX J C, TOTH F L et al. Emissions Trends and Drivers. In IPCC,2022: Climate Change 2022: Mitigation of Climate Change[R](2022).
[4] SZOPA S, NAIK V, ADHIKARY B et al. Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis[R](2021).
[5] SAUNOIS M, STAVERT A R, POULTER B et al. The global methane budget 2000-2017. Earth System Science Data, 12, 1561-1623(2020).
[6] TIAN H, XU R, CANADELL J G et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586, 248-256(2020).
[7] JACOB D J, VARON D J, CUSWORTH D H et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 22, 9617-9646(2022).
[8] ZHOU M, LANGEROCK B, VIGOUROUX C et al. TCCON and NDACC X CO measurements:Difference, discussion and application. Atmospheric Measurement Techniques, 12, 5979-5995(2019).
[9] PATHAKOTI M, GADDAMIDI S, GHARAI B et al. Retrieval of CO2, CH4, CO and N2O using ground-based FTIR data and validation against satellite observations over the Shadnagar, India. Atmospheric Measurement Techniques Discussions, 1-19(2019).
[10] CHEN L F, HAN D, TAO J H et al. Overview of tropospheric NO2 vertical column density retrieval from space measurement. Journal of Remote Sensing, 13, 343-360(2009).
[11] BAI Wenguang, ZHANG Xinying, ZHANG Peng. Temporal and distribution of tropospheric CO2 over China based on satellite observation. Chinese Sci Bull, 55, 2955-2962(2010).
[12] YAO Lu, YANG Dongxu, CAI Zhaonan et al. Status and trend analysis of atmospheric methane satellite measurement for carbon neutrality and carbon peaking in China. Chinese Journal of Atmospheric Sciences (in Chinese), 46, 1469-1483(2022).
[13] LAMBERT J C, KEPPENS A, COMPERNOLLE S et al. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #17: April 2018–November 2022(2022).
[14] BUCHWITZ M, ROZANOV V V, BURROWS J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances. Journal of Geophysical Research:Atmospheres, 105, 15231-15245(2000).
[15] ZHAO Shaohua, YANG Xiaoyu, LI Zhengqiang et al. Advances of ozone satellite remote sensing in 60 years. National Remote Sensing Bulletin, 26, 817-833(2022).
[16] NOËL S, REUTER M, BUCHWITZ M et al. Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm. Atmospheric Measurement Techniques, 15, 3401(2022).
[17] YUE T, ZHANG L, ZHAO M et al. Space-and ground-based CO2 measurements: A review. Science China Earth Sciences, 59, 2089-2097(2016).
[18] DAI Liuxin, LIANG Mingjun, ZHANG Ying et al. Review of the satellite remote sensing studies of the Non-CO2 greenhouse gas N2O. China Environmental Science, 43, 2081-2094(2023).
[19] Team GHG-CCI+Project. ESA Climate Change Initiative “Plus” (CCI+) Product Validation and Intercomparison Report (PVIR) version 3 for the Essential Climate Variable (ECV) Greenhouse Gases(GHG):XCO2 and/or XCH4 from OCO-2, TanSat, Sentinel-5-Precursor and GOSAT-2(2022).
[20] BUCHWITZ M, LINDQVIST H, BORSDORFF T et al. GOSAT-2 Quality Assessment summary(2022).
[21] Qing Y, Lambrigtsen Bjorn. AIRS Version 7 Level 2 Performance Test and Validation Report(2020).
[22] THRASTARSON H T. AIRS/AMSU/HSB Version 7 Level 2 Product User Guide[Z](2021).
[24] Keppens A, Hubert D, Granville J et al. SCIAMACHY SGP 6.01 Level-2 Data Products O3,NO2,CO,CH4,BrO and H2O(2016).
[25] [25] LIVESEYN J,READW G,WAGNERW A, et al. Version 5.0x Level 2 and 3 data quality and description document, Jet Propulsion Laboratory[S].California Institute of Technology, 2022.
[27] [27] TeamOMI . Ozone Monitoring Instrument (OMI) Data User’s Guide[S]. 2012.
[28] HUBERT D, KEPPENS A, GRANVILLE J et al. Multi-TASTE Phase F Final report(2016).
[29] MATTHEWS M W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32, 6855-6899(2014).
[30] TURQUETY S, HADJI LAZARO J, CLERBAUX C et al. Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer: IASI TRACE GAS RETRIEVAL ALGORITHM. Journal of Geophysical Research: Atmospheres, 109(2004).
[31] GOLDBERG M D, YANNI QU, MCMILLIN L M et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Transactions on Geoscience and Remote Sensing, 41, 379-389(2003).
[32] BUCHWITZ M, BURROWS J P. Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra: Retrieval algorithm and first results, 5235, 375-388(2004).
[33] PLATT U, STUTZ J. Differential Absorption Spectroscopy, 135-174(2008).
[34] PLATT U. “Differential Optical Absorption Spectroscopy (DOAS). Sigrist, 127, 27-84(1994).
[35] SCHNEISING O, BUCHWITZ M, REUTER M et al. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmospheric Measurement Techniques, 12, 6771-6802(2019).
[36] SHCHEPKOV S O, BRIL A, YOKOTA T et al. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites. Applied Optics, 52, 1339-1350(2013).
[37] IWASAKI C, IMASU R, BRIL A et al. Optimization of the Photon Path Length Probability Density Function-Simultaneous (PPDF-S) Method and Evaluation of CO2 retrieval performance under dense aerosol conditions. Sensors, 19, 1262(2019).
[38] SCHEPERS D, GUERLET S, BUTZ A et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms: CH4 FROM GOSAT-ALGORITHM COMPARISON. Journal of Geophysical Research: Atmospheres, 117(2012).
[39] PARKER R J, WEBB A, BOESCH H et al. A decade of GOSAT Pro-xy satellite CH4 observations. Earth System Science Data, 12, 3383-3412(2020).
[40] LORENTE A, BORSDORFF T, BUTZ A et al. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmospheric Measurement Techniques, 14, 665-684(2021).
[41] HAYS P B, ROBLE R G, SHAH A N. Terrestrial Atmospheric Composition from Stellar Occultations. Science, 176, 793-794(1972).
[42] MARKS C J, RODGERS C D. A retrieval method for atmospheric composition from limb emission measurements. Journal of Geophysical Research, 98, 14939(1993).
[43] KYRÖLÄ E, TAMMINEN J, LEPPELMEIER G W et al. GOMOS on Envisat: an overview[J]. Advances in Space Research, 33, 1020-1028(2004).
[44] BERTAUX J L, KYRÖLÄ E, FUSSEN D et al. Global ozone monitoring by occultation of stars: An overview of GOMOS measurements on ENVISAT. Atmospheric Chemistry and Physics, 10, 12091-12148(2010).
[45] RODGERS C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Reviews of Geophysics, 14, 609(1976).
[46] YOSHIDA Y, EGUCHI N et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmospheric Measurement Techniques, 4, 717-734(2011).
[47] YOSHIDA Y, KIKUCHI N, MORINO I et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533-1547(2013).
[48] CRISP D, O’dell C, ELDERING A et al. Orbiting Carbon Observatory (OCO) - 2 LEVEL 2 Full Physics Algorithm Theoretical Basis Document[Z]. Version 3.0-Rev 1, Jet Propulsion Laboratory, California Institute of Technology(2021).
[49] BOESCH H, BAKER D, CONNOR B et al. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sensing, 3, 270-304(2011).
[50] HU H, HASEKAMP O, BUTZ A et al. The operational methane retrieval algorithm for TROPOMI. Atmospheric Measurement Techniques, 9, 5423-5440(2016).
[51] CHEN Liangfu, ZHANG Ying, ZOU Mingmin et al. Overview of atmospheric CO2 remote sensing from space. Journal of Remote Sensing, 19, 1-11(2015).
[52] SANG Hao, WANG Xianhua, YE Hanhan et al. Statistic retrieval method of Carbon Dioxide based on principal component analysis. Journal of Atmospheric and Environment Optics, 12, 202-209(2017).
[53] FRANKENBERG C, PLATT U, WAGNER T. Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard. Atmospherric Chemistry and Physics, 5, 9-22(2005).
[54] WANG Ruwen. Algorithm Research and Application on the Greenhouse Gases Column Density Retrieval(2019).
[55] GERILOWSKI K, TRETNER A, KRINGS T et al. MAMAP–a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis. Atmospheric Measurement Techniques, 4, 215-243(2011).
[56] LIU Shuanghui, LI Xiaoying, CAO Xifeng et al. Development of atmospheric methane observation and distribution of global methane. Remote Sensing Technology and Application, 37, 436-450(2022).
[57] LIAO Xiuying, SUN Jiulin, LU Ning et al. Discussion on atmospheric CO2 Retrieval using SCIAMACHY data. Progress in Geophysics, 27, 837-845(2012).
[58] BRIL A, OSHCHEPKOV S, YOKOTA T et al. Retrievals of atmospheric CO2, CH4 and optical path modifications from the GOSAT observations, 889008(2013).
[59] OSHCHEPKOV S, BRIL A, YOKOTA T. PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space. Journal of Geophysical Research, 113, D23210(2008).
[60] WU Hao. Influence of cloud and aerosol in atmospheric CO2 inversion and its correction method(2019).
[61] OSHCHEPKOV S, BRIL A, YOKOTA T et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT:VALIDATION OF PPDF-BASED CO2 RETRIEVALS. Journal of Geophysical Research: Atmospheres, 117(2012).
[62] FRANKENBERG C, MEIRINK J F, VAN WEELE M et al. Assessing methane emissions from global space-borne observations. Science, 308, 1010-1014(2005).
[63] WANG Y P, LI X Y, CHEN L F et al. Overview of infrared limb sounding. Journal of Remote Sensing, 20, 513-527(2016).
[64] ZHANG Simin, WU Xiaocheng, SUN Mingchen et al. Using onion-peeling method to inverse ozone density based on the stellar occultation technology in the near space region. Spectroscopy and Spectral Analysis, 42, 203-209(2022).
[65] BUTZ A, GUERLET S, HASEKAMP O et al. Toward accurate CO2 and CH4 observations from GOSAT: GOSAT CO2 and CH4 Validation. Geophysical Research Letters, 38(2011).
[66] DENG J, LIU Y, YANG D et al. CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: Sensitivity study and preliminary test with GOSAT data. Chinese Science Bulletin, 59, 1499-1507(2014).
[67] KULAWIK S S, JONES D B A, NASSAR R et al. Characteri-zation of Tropospheric Emission Spectrometer(TES) CO2 for carbon cycle science. Atmospheric Chemistry and Physics, 10, 5601-5623(2010).
[68] EREMENKO M, SGHERI L, RIDOLFI M et al. Tropospheric ozone retrieval from thermal infrared nadir satellite measurements: Towards more adaptability of the constraint using a self-adapting regularization. Journal of Quantitative Spectroscopy and Radiative Transfer, 238, 106577(2019).
[69] BUTZ A, HASEKAMP O P, FRANKENBERG C et al. CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes: Evaluation of CH4 Retrievals from Space. Journal of Geophysical Research: Atmospheres, 115(2010).
[70] WEBER T, WISEMAN N A, KOCK A. Global ocean methane emissions dominated by shallow coastal waters. Nature Communications, 10, 4584(2019).
[71] MARSHALL J, BERGAMASCHI P, HOUWELING S et al[S](2020).
[72] VALKS P, PINARDI G, RICHTER A et al. Operational total and tropospheric NO2 column retrieval for GOME-2. Atmospheric Measurement Techniques, 4, 1491-1514(2011).
[74] ZHANG C, LIU C, CHAN K L et al. First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the GaoFen-5 satellite. Light: Science & Applications, 9, 66(2020).
[75] CHENG L, TAO J, VALKS P et al. NO2 Retrieval from the Environmental Trace Gases Monitoring Instrument (EMI): Preliminary results and intercomparison with OMI and TROPOMI. Remote Sensing, 11, 3017(2019).
[76] WANG H, LI X, XU J et al. Assessment of retrieved N2O, NO2, and HF profiles from the atmospheric infrared ultraspectral sounder based on simulated spectra. Sensors, 18, 2209(2018).
[77] BOERSMA K F, VINKEN G C M, Eskes H. J. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals. Geoscientific Model Development, 9, 875-898(2016).
[78] KUHLMANN G, LAM Y F, CHEUNG H M et al. Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model. Atmospheric Chemistry and Physics, 15, 5627-5644(2015).
[79] REMEDIOS J J, RUTH S L, RODGERS C D et al. Measurements of methane and nitrous oxide distributions by the improved stratospheric and mesospheric sounder: Retrieval and validation. Journal of Geophysical Research: Atmospheres, 101, 9843-9871(1996).
[80] BUCHWITZ M, DE BEEK R, NOËL S et al. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmospheric Chemistry and Physics, 6, 2727-2751(2006).
[81] MA Pengfei, XIONG Xiaozhen, Chen Liangfu et al. Temporal and Spatial Characteristics of Nitrous Oxide Concentration in China. Spectroscopy and Spectral Analysis, 41, 20-24(2021).
[82] QIAN Y, LUO Y, SI F et al. Total ozone columns from the Environmental Trace Gases Monitoring Instrument (EMI) Using the DOAS method. Remote Sensing, 13, 2098(2021).
[83] CHEN C, MA P, CHEN L et al. Nitrous oxide profile retrievals from atmospheric infrared sounder and validation. Atmosphere, 13, 619(2022).
[84] QIAN Y, LUO Y, ZHOU H et al. First retrieval of total ozone columns from EMI-2 using the DOAS method. Remote Sensing, 15, 1665(2023).
[85] METTIG N, WEBER M, ROZANOV A et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements. Atmospheric Measurement Techniques, 15, 2955-2978(2022).
[86] RICAUD P, ATTIÉ J L, CHALINEL R et al. The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project. Remote Sensing of Environment, 266, 112688(2021).
[87] BOWMAN K W, STECK T, WORDEN H M et al. Capturing time and vertical variability of tropospheric ozone: A study using TES nadir retrievals: Capturing ozone time and vertical variability. Journal of Geophysical Research: Atmospheres, 107, 11-1(2002).
[88] METTIG N, WEBER M, ROZANOV A et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range. Atmospheric Measurement Techniques, 14, 6057-6082(2021).
[89] NATRAJ V, LIU X, KULAWIK S et al. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements. Atmospheric Environment, 45, 7151-7165(2011).
[90] VON CLARMANN T, DEGENSTEIN D A, LIVESEY N J et al. Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature. Atmospheric Measurement Techniques, 13, 4393-4436(2020).
[91] CHEN Liangfu, WANG Yapeng, ZHANG Xinxin et al. Satel-lite Remote Sensing Monitoring of Ozone and Its Precursors for Regional Secondary Pollution Risk Control. Environmental Monitoring and Forewarning, 11, 13-21(2019).
Get Citation
Copy Citation Text
Xiyuan MI, Ronghai HU. Advances of Satellite Remote Sensing Retrieval on Non-CO2 Greenhouse Gases[J]. Remote Sensing Technology and Application, 2024, 39(4): 793
Category:
Received: Apr. 24, 2023
Accepted: --
Published Online: Jan. 6, 2025
The Author Email: